
AD-Ri54 678 NEM DEVELOPMENTS ON THE CORE FUNCTION FOR EFFICIENT 1/.
IMPLEMENTATION OF THE..(U) BOEING COMPUTER SERVICES CO
TUKMILR NR R E ALTSCHUL ET AL. FEB 85 N88014-B4-C-0136

UNCLASSIFIED FG 12/1 NL

""-IIII"IIII
"IIIIIIII'

-Z.

&L2.

k. 2L3 2-

III II 1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-A '1

I,'. d"

LL

-71

NEW DEVELOPMENTS ON THE CORE FUNCTION FOR EFFICIENT
IMPLEMENTATION OF THE DIFFICULT RESIDUE NUMBER SYSTEM

OPERATIONS

Final Report V.

November 1983 through February 1985
Manuscript Completed: April 1985

Prepared by Roberto E. Altschul, Dale D. Miller1, John N. Po lky2, James R. King 3, and
David A. Uvelli4

- Boeing Computer Services Division

The Boeing Company

In 565 Andover Park West
Mail Stop 9C-01

Tukwila, Washington 98188

Prepared for V"-

OFFICE OF NAVAL RESEARCH
Statistics and Probability Branch - -

Arlington, VA. 22217
Under Contract No. N0001 4-84-C-01 30

1. BAE Automated Systems Inc. DTIC
2. Sigma Research Inc. ELECTE
3. University of Washington JUN 5 '19 85
4. Seattle Silicon Technology Inc.

,..- -.% ,

OIIC FILE COPYIDISTRIBUTION STATEMENT A :%;

Approvuod tot public relecaq
Distribution Unlhm1itfi

85 5 16 049 2.
_ - . V

" .. !~* V.,, V-o,. V -. , .,*.. ..1"'.-." "";"- "

Abstract. This paper develops new properties of the core function on a residue number system (RNS) -7.

which allows efficient implementation of the operations of comparison, overflow detection, sign

determination, parity determination, scaling, and general division. Previously these operations have 0

been considered difficult to implement in high speed hardware and have not taken advantage of

the parallel structure of a residue class architecture. In 1977, Akushskii, Burcev and Pak introduced . -: 2

the core function and presented algorithms for these difficult operations. While these algorithms

were superior to previous techniques, the evaluation of the core function required, in general, an .-

iterative, complex procedure. Moreover, while these techniques were theoretically attractive, they
were unable to construct a methodology for determining a suitable core function for a realistic

moduli set In the present work, a new method for evaluating the core function is introduced. This

method utilizes a redundant modulus and its computational complexity is equivalent to that of -the

first iteration of the method of Akushskii et al. While this new method requires additional hardware

to carry on this redundant modulus calculation, it provides more information and allows more

flexibility than the previous method. New and much more efficient algorithms for the difficult RNS*

operations are developed. In addition, new structural properties of the core function are developed,

end the optimality of the function is characterized. The selection of an optimal core function for any

moduli set is cast as an integer programming problem.Finally, to ensure its applicability to real time

signal processing hardware, the feasibility of implementing the core and other residue functions in

VLSI circuits was investigated. *4t was determined that a core calculation can be implemented on a

* .single chip in one 50 nsec clock cycle.

;-.: ,~ - : ';'

Accession For

DTIC TAB5

LlnaruictmcedJus t i f ica ,t i on- :' :--

BY __,_ - - , ,- ...
DI. ,tributio,/

. Avo, I a2!A.ity vls
-A.. i i t.",/ r -

I ; ° , " ,- '..,

E.'-;€ - . ._'"_-_- ._,'_ __.. ._ _ __,_._-_-. , . ,.. .. , . -'[',: ''

L',: i-'.',,' ' ,,'X, ',_Z . ",. U , ,'- ,_ .".'."•- .-, . .-. ,..•,,'..-,- -"A"."--:- -'., ,.'-.

* - - % - -

• 'I. , -o '

TABLE OF CONTENTS

I. Introduction

II. Definition and Properties of the Core Function

Ill. Computation of the Core Function

IV. Redundant Modulus Calculation

- V. Selecting a Core Function

- Vl. Algorithms for Comparison r.

VII. Algorithms for Division

* ViII. VLSI Implementation of the Core Function

IX. Conclusion and Future Work

Appendix Floating Point Arithmetic

-;. References

-

L .- ' '--

: °" 6

' -. - W 7Z 7- . T

I. INTRODUCTION

The Residue Number System (RNS) offers the potential for very high speed integer arithmetic for ..- ,. \

signal processing applications. However, due to the relative difficulty of performing such operations

as sign detection, magnitude comparison, and parity checking for residue encoded numbers, it has

been impractical to embed data depedent logical branching in the overall computational flow. Since -.

many signal processing problems require the reduction of large volumes of data to a few, relatively

simple decision paths, the RNS has had an insignificant impact on commercial or military signal

processing systems. The primary goal of this project was to investigate new RNS methods to satisfy

the nonlinear signal processing requirements of the Navy's Ocean Surveillance Signal Processing

Program. A secondary goal of this effort was to investigate and evaluate recent Soviet

developments in the use of the RNS for high speed computation. Initial investigations of the Soviet

work yielded some promise of a solution to the nonlinear signal processing problem. In this paper

the Soviet work is described and new developments presented which include new algorithms

permitting hardware implementation of the nonlinear operations. This solution is superior to any

previous RNS techniques and is competitive with a binary implementation in terms of computational

latency, throughput, and hardware complexity.

A considerable body of Soviet work exists in the open literature, dating back to the mid 1960's. This

includes well over fifty papers and two recent books, many of which are referenced in Miller et al [3].

A number of patents have been issued for the device implementation of many of these concepts, and ,'.

special purpose RNS processors have been built. The principal investigators include I. Akushskii, V. .

Amerbaev, V. Burcev, I. Pak, and D. Yuditskii. Their results have both paralleled and diverged from

Western work.

In the late 1960's, hardware architectures for complex residue systems were developed, utilizing an

isomorphism from the complex RNS on the moduli set (P, + iql....,Pn + iqn) to the real RNS on the

................. . ..-

% ~~~~~~~~~~~.°"o- .. ° =. °. o=.-.-.- -.-. .-.. '-. .-.-.-. .. ,.. . . -.. ° •.•.. '.-.

moduli set (p, 2 + ql2 pn2 + qn2). Much of this early work concentrated on the use of redundant .- .* ,-.

residue systems for error detection and correction. In the 1970's, subjects considered included the

use of non-coprime moduli, quadratic residue systems, magnitude comparison, parity detection, RNS
% ...; -

representations of rational numbers, fractional multiplication and division, rounding, and the use of

optical techniques for RNS processing.

A recurrent theme in much of the work from the mid 1960's to the present has been the study of

positional characteristics of residue encoded numbers. A positional characteristic of a number is a

characteristic easily determined from a positional radix representation. These efforts were directed

at defining a function from the RNS to the integers which could be easily evaluated and would"* "

permit efficient sign detection, comparison, and parity determination. In 1970 Amerbaev studied

the use of threshold networks for determining positional characteristics, leading to a 1973 patent . - ,

with Akushskii and others for its hardware implementation. During the 1970's, several techniques

were proposed which offered detection of overflow under addition and other positional

information when using specialized moduli sets.

In 1977, Akushskii, Burcev, and Pak introduced the notion of the core of a residue number 111, [21.

The core function provides an easily implemented and efficient technique for performing the

traditionally difficult residue operations: sign detection, magnitude comparison, scaling, parity

determination, overflow detection, and extension of base.

This paper reviews the concept and properties of the core, describes algorithms for performing the

difficult residue operations, presents new techniques for the efficient evaluation of the core, and

characterizes the problem of selecting an appropriate core function for a given moduli set. For

example, comparison of two numbers in a residue system with n moduli can be performed in 3

clock periods using n + 5 integrated circuits and can be pipelined to achieve a 20 MHz data rate.

.*._, , =-* = *p*, 5 " **s,~ ,- * * , *, ,- a-.- . . . -- - .,. .- .".' . . , - -.
I i 1 1 - t ' ' -

"
=" ' "- " " " " , ,*"•" ,,

Similar improvement over existing methods can be obtained for the other difficult residue

operations..

Section II defines the core function and presents a number of its properties. Section III discusses the

computation of the core. For a properly selected core function, the evaluation of the core at most

integers within the RNS range is easily computed from its residue representation. However, in some

cases this calculation yields an ambiguous result, and a more complicated algorithm is required to

evaluate the core. In Section IV a new algorithm for core calculation is presented which utilizes a

redundant modulus to avoid these difficulties. Another difficulty for the practical utilization of the

core has been the selection of certain fixed coefficients which determine a particular core function.

Section V shows how this can be recast as an integer programming problem which can be solved by V-

standard tools to obtain an optimal core.

Section VI presents algorithms for magnitude comparison, and Section VII gives algorithms for

general division. Two algorithms are presented in each section: a general algorithm for an arbitrary

core function and an efficient algorithm for a suitably linear core. In Section VIII, the VLSI

implementation of the core function and other RNS operations is discussed. The goal of this

investigation was to ascertain the feasibility of implementing several basic residue operations on a

single chip. Given the current status of VLSI design tools, the most efficient approach to this

feasibility investigation is to perform complete design and layout of prototype VLSI circuits. This

section describes coding considerations, logic reductions, and the VLSI design steps. The results of

this work affirm the feasibility of implementing such algorithms as a core evaluation on a single chip ..

at high speed and throughput

The work of Akushskii et al. has continued, focusing on the use of the core function to perform

floating point arithmetic using the RNS. In this setting, an integer a in the residue system actually

* S S ~ *~ ~ ., ..-.-. 5

-..-. -..-..-, , -= . ..- :. - -%......-..'-.. . .'-'..'

represents the product of the proper fraction aIM with a power of 2, where MW is the product of the

moduli. Algorithms for addition, multiplication, division, and binary shifting have been developed,

and a patent for a general purpose floating point arithmetic unit based on these concepts has

appeared. These algorithms are described in the Appendix.

II. DEFINITION AND PROPERTIES OF THE CORE FUNCTION

Let m,..., mn be the relatively prime moduli of a residue number system with product M. For any 9

integer a, 0 ; a < M, there exists a unique n-tuple (ai) = (a ... , an) with 0 <-ai < mi for which a a

ai (mod m.J. In this case we write a = (ai). If b is an arbitrary integer satisfying b B ai (mod mi), we

say b is a representative of (a) and write b -(ad (mod M). A residue encoding (ad will always be .

assumed to lie in the internal [0, M). For any integers a andm, Jlm denotes the least non-negative

residue of a modulo m, and if (am) = 1, /11arn denotes the multiplicative inverse of a modulo m.

The n-tuple (al..an) determines a unique integer a, 0 S a < M. Nevertheless, unless decoded, the

n-tuple conveys no positional information, i.e., magnitude comparisons are not possible from simple

direct analysis of the n-tuples. It is of interest to find some means of attaining such information in an

economic and computationally feasible way.

For a given modulus, say m, an integer is uniquely determined by the quotient [am] and the

residue / arn = Ca. Furthermore the information given by the pairs of (quotient, remainder) are

sufficient for magnitude comparisons. If a and b are any two integers, then a < b if and only if

aiml < [blml or, [aml] = [blml and /a m, < lb/m.

-. %!

Thus if both [almi] and (ai) are represented in the RNS, comparisons are possible. However, this

approach is not practical since it leads to calculations on domains of just one order of magnitude

smaller than that of the RNS, viz., for a [OM) the quotients [a/mJ take values in [0,M/md. An

alternative is to consider a simple function of the set of quotients [a/md. The simplest form for such

a function is an integer linear combination of the quotients. This is the form of the core function as

defined by Akushskii et al.

S. . .,.."

.-.- _ ~~.. ._.......

-" :m"%°..- -

0

Definition. Let wy,....Wn be fixed but arbitrary integers, not all zero. The core C(a) of an arbitrary

integer a is defined as

C(a) = .w[alm],

where [- denotes the greatest integer function.

The core coefficients wi are fixed for the moduli set and do not depend on the integer a. The

selection of the wi is important for efficiency of the core calculation, cf. Sections III and IV. It is

desirable that the wi are chosen so that the range of the core function on [O,M) is small, i.e., on the -

order of the individual moduli of the system. It is not obvious from the definition that C(a) is easily

computable from (-ad, since the definition would require that (aid first be decoded to obtain a, then n

integer divisions be performed, and finally an inner product of length n taken. It will be shown later

that the core can be obtained directly from the (ai) as the residue of an inner product.

Note also from the definition that C(a) is a step function. As a increases, C(a) remains constant until a

equals a multiple of any of the moduli, at which a step jump occurs. Note next that if all the wi are

positive, C(a) is a non-decreasing function and hence contains direct positional information;

however, C(M) (and hence the range or the core function) will be quite large, and evaluation of the
A

core function becomes computationally intractable. For example, if each wi = 1, C(M) = wi i =

AA
Zi mi, where Ai = MImi. Thus it will be required that both positive and negative core coefficients are

used, resulting in a core function which is no longer monotonic.

.1

Akushskii et al. considered the core a 'positional characteristic" of a residue encoded number. For

computational reasons, they required selection of the wi's so that C(O) (=0) and C(M) are near the

minimum and maximum cores on [0,M), respectively. Consequently, the cores they considered

tended to be nearly non-decreasing with step function graphs having some negative steps but

S S ~ ~ ~ b .',-.'*--.'.. . .

generally following the straight line from (0,0) to (M, C(M)). Such cores will thus contain global

positional information: a << b if and only if C(a) < C(b). Locally, however, such a core does not

directly distinguish magnitudes. Thus in selecting the coefficients wi for a core function, the tradeoff %

between compactness of range and monotonicity must be balanced.

We will demonstrate a modified algorithm for computing cores which does not require the

approximate monotonicity of the core function. Thus highly nonlinear, 'wild" core functions which

may have very small ranges can be considered. In Section IV it is shown that such wild core functions -

can be used for parity determination, extension of base, and scaling. However, for sign detection

and magnitude comparison, a global linearity of the core is still required.

Figure I illustrates the graphs of four cores. The first graph is taken from an example in [21 having

moduli set (7,9,111 and core coefficients (-1,-1,3}. The core is approximately monotonic, taking its

minimum near 0 and its maximum near M = 693. Figure 1(b) illustrates a core for the same moduli

set and core coefficients (1,2,-4). For this moduli set, these coeiricients give rise to the core of

minimal range. In Figures 1 (c), (d), cores are shown for the more practical moduli set

(23,25,27,29,31). The core coefficients for (c) are f-3, -2, 4,-1, 31 and for (d) are {-1,8,-2,-4,-2}.

In this section, several properties of the core are derived and used to give efficient algorithms for the

'difficult' residue operations. Since these algorithms require calculation of the core, the elegance

of the algorithms cannot be fully appreciated until core calculation is discussed in Sections III and IV.

Most of the theorems in this section are due to Akushskii et al., although the proofs have been

considerably simplified and several errors corrected.

7-

* - I

Figur 1. Gah fforcr uciosilsrt

(a)~th torudi setee comp9,11es (b) radnget 7.11
coreweight d = linearitoy.eghs 1,.4

e first theorem gives a formula for an integer a in terms of its core and its residue representation.

thus provides a decoding algorithm which is similar to the Chinese remainder theorem with the

vantage that no modulo M reductions are required.

ieorem I (Akushkii et al.). If a is any integer (not necessarily restricted to [O,M)), and C (M) = 0,

en

M- C(a) + a i (AMiw)

C(M)
oof. Since a5 a-a,

M M

) implies that

M- C(a)= w.M(a-al.)/m.

A A
=aEwm.- EW a m.

he result follows by solving for a.

he nonlinearity of the core arises from the truncation of the greatest integer function. The next

ieor n provides a measure of how close the core function is to being an additive homomorphism.

his theor. 'vides the basis for many of the ensuing results.

heorem 2 (Akushskii et al.). If a (ai) (mod M) and b (Bi) (mod M) are integers (not necessarily

stricted to [O,M)), then

C(a + b) = C(a) + C(b) + uwe., -...-

there

t.= -- =O0or 1. '.'"a. z .+. ,.

-9-, <

itical core is found. The lift stage then reverses the steps of the first stage, by removing the critical "

pect of the core. This stage assumes core functions satisfy some degree of separability.

!t a be an integer with critical core. In the descent stage, a modulus is discarded and the core of a is

)mputed relative to the reduced moduli set, using a new set of coefficients wi, pre-selected for the

duced moduli set. if this core is critical, another modulus is discarded and the step repeated. The

escent is terminated when a non-critical core is found. The descent is guaranteed to terminate at or . ""

efore the stage at which the reduced moduli set has only two moduli, since w, and w2can be chosen

that no critical cores are present (e.g., w, 1 and w 2 1, or w, 0 and w 1

he method of lifting appends iteratively the previously discarded moduli and determines the true

ore at each stage. Assume the core is not critical for the residue encoded integer (aV ..., a,) relative

the moduli set m ,,.... m. With Theorem 9, this known core is used to extend this integer relative to

ie new basis element m,o . The resulting residual J3 must satisfy

+ k- (m1. mi) ai+ (modm 1) (5)

or some integer k E [0, mr,). If the interval [0, m, ... m,.) is partitioned into m,., consecutive

itervals containing m ..° m, integers each, k determines the number of the interval containing

re..., a,). Thus the true core of (a,. a,). relative to m,,..., rn,, can be determined if the core

inction is mi I - separable. If the core function is relatively linear the process is reduced to a simple

omparison: if k is less than a predetermined constant K then the true core is that which is close to

ero, otherwise the true core is that which is close to the core at the product m, ... M,,,. In the

articular case where the constant K is equal to [mii / 21, this process reduces to the one presented

-23-

.

:ore is relatively linear and C(M) is small, the range of C must be small. Experiments conducted by

he authors indicate that compactness and linearity are opposing traits.

Ikushskii et al. introduced the method of descent and lift to determine the true value of a critical

:ore. Both this method, and the redundant modulus core calculation (introduced by the authors in

Section IV), assume that the core function can separate integers with cores that are different but

equal modulo C(M). Akushskii et al. tacitly assume that if a and b are two integers in [O,M) with

C(b) = C(a) + C(M), then a < M/2 and b > M/2. This condition, though sufficient to solve the

problem of critical cores, may be too restrictive when considering the selection of weights wi, cf.

Section V.

A weaker concept is introduced, called m-separability. This notion resolves core ambiguities and will

be used in Section V in the selection of core functions.

Definition. Let s >- 1 be a real number. A core function C(-) is said to be s-separable if

a-b < -implies C(a) - C(b) < C(M.

If a core function is m-separable, assume its range [O,M) is divided into m consecutive disjoint

subintervals, say It, ., each of length M/m. Within each of these, cores are unambiguously S

defined; i.e. if a and b are in Ij, and C(a) - C(b) (mod C(M)), then C(a) = C(b). Thus for aEli, the

mapping IC(a)IC(M;-C(a) is well defined and can be implemented by table lookup.

The method given by Akushkii et al. consists of two stages: descent and lift. The descent stage

iteratively discards a modulus and evaluates a core function on the remaining moduli set until a non-

-22- "-

.......- 2
....................

If 0 S C (a) < C (M), (4) gives the actual value of C(a); otherwise, the core has been reduced modulo

C(M).

Let

Cj =min{C(a):0!<a<M.

C =max{C(a):O:Sa<M}

From Theorem 3, it follows that

C +C =C(M)-Z€..min max j

Furthermore, since C(0) = 0, l

C <0.
min

The range of values the core function takes in [0,M) is [C,. C]. If a core IC(a)lcrmis calculated by (4)

and C. - C(M) < IC(a)c(m) < C(M) + Cmin, then C(a) = IC(a)C(., and thus the core has been

unambiguously determined. Otherwise. (4) yields an ambiguous result. Cores having (C(a)I/cr in the

intervals [0, C - C(M)J or +C + C(M), C(M)j are called critical cores. (it should be emphasized that

the result of the evaluation of (4) is therefore self validating.) Moreover, most practical core

functions will have some critical cores.

In selecting the weights for a core function, the trade between compactness of range and linearity

can now be appreciated. Since (4) involves only modular arithmetic, it is best evaluated using

hardware similar to that for other residue calculations. Thus C(M) should be on the same order as

the moduli of the system. On the other hand, the core should be relatively linear so that C is near 0min

and C , is near C(M), minimizing the number of integers in [0, M) having critical cores. But if the

-- 21 -

. . -- -..

.-..

. Z -, . rr.

Formula (3) follows by applying the definition of the core function (1) to B,, and using the facts that

fBI m~j (B,/mj) for ji, and [BI mil (MB -1)Imi).

Theorem 12 (Chinese Remainder Theorem for Core Functions, Akushskii et al.). If a =(a,) is an

integer in [0,M), then its core is given by

C(a) E a.C(B.) -C(M- R (a).

Proof. Using the rank function as given by (2), and the orthogonal core basis given in (3), the core of

a is evaluated as

j=1 j J=__

j=1I j i=1

i=1 _=_ J i j=1

=P d a..- R (a) C(M.

In a residue implementation the core can be evaluated modulo C (M) as

C(a) 'C (M)= IZaC(B,)jCM (4)

-20-

The next lemma gives an explicit representation of the elements of the orthogonal basis.

Lemma. The elements of the orthogonal basis are given by

B. m." ..

B. A A7 m.n

AProof. Since Bi f[OM) is divisible by mi for allijvi, it can be written as Bi =kmi, whereO < k < mi.

AAFurthermore, Bi - I is divisible by mi, and so kmi 1 (mod mi), or equivalently k / It/mi/m,. .

Substituting these values for the Bi into Theorem 11 gives

a MrI AJI" A,.

J~~ i-1 i

a slightly different formulatiun of the Chinese remainder theorem than given by Szabo' and Tanaka

(41. Note also that the rank function R(a) is analogous to the function A(a) defined by (41

A C1a = A m.l-I -A(a)- M
M.

In general A(a) < R(a).

The values the core function assumes at the orthogonal basis elements perform the role of a basis.

This is given by the Chinese Remainder Theorem for Core Functions which expresses the core of an

integer in the range of the RNS as an inner product of its residues with the 'orthogonal core basis'

(C(BJ). These coefficients are constants of the RNS and are precomputed as -

C (M) LU. .-" .":.
C(B)= B - • (3),''-...

M -M.

,0

- 19 -0 -

", '.'.'.;,','," ;€,7 , r , ~~~~~~~~~~~~~~.--. , - •- .-.. •.. ..--.. - -•..

Ill COMPUTATION OF THE CORE FUNCTION

The definition of the core function as given in Section I, though useful for the derivation of its

properties, is not efficient for computations within the context of residue arithmetic. Its use requires

decoding of the residue representation, n integer divisions, and finally an inner product of length n. .

In this section it will be shown how the core function can be evaluated directly from the residue

representation of an integer in the range of the RNS. This result, referred to as the Chinese .

Remainder Theorem for Core Functions, gives core values modulo the core of M. This leads to the

presence of some ambiguous cases, called critical cores. Several methods are presented that permit

the unambiguous evaluation of these cores. .

Let Bi=(3) E [O,M) be defined by

= I..
10 otherwise

The set B1, B2 , .B, is called an orthogonal basis for the residue system. The nomenclature is

justified in view of the form of the Chinese Remainder Theorem as stated below without proof.

Theorem 11 (Chinese Remainder Theorem). Ifa = (ai), then a = JZ aiB IM.

The difference between Z ai Bi and a is a non-negative integer multiple of M. This number R(a) is

called the rank of a and satisfies the relation

IL .

Ea.B. - a=--,. R(a).(2

- 18 -

.' m.m. . a.9

J~ w.

Since~ 0 Sr < i, the right side may be reduced modulo i, giving the result.

Theorem 10 (Akusi; et al.). Leta (ad (mad M) and let p satisfy (C(M), p) =1. Then

A

P C(MP C()P A

Proof. The result follows immediately from Theorem I upon reduction modulo p. -:,

Theorem 10 provides a new approach to general scaling. If a =(ad is to be scaled by p. then a/p is

computed as

-17-

each involve modular calculations consisting of a core function evaluation and an inner product of

(ca with a fixed weight vector.

We begin with the following lemma.

Lemma. If a =(a,) is divisible by p and alp =(;i), then

C(a/p) =

Proof. Since a =alp +* -. + alp (p summands), by iteration of Theorem 2,

a P
C(a)p- C(-)+ EW . I

The result follows by solving for C(a/p).

Theorem 9 (Akushskii et al.). Let a (aj be divisible by mi (i.e., a1 0) and let (w, i) =1. Then

44J i~ iC j

Proof. Since a. =0, applying the lemma with p =mi gives

M. Z. -a

a~ ~ I~

C(-)
4 M

where (r,) is the RNS encoding of aim1. Thus

-16 -

Since C(M) 0 0, C(c) * C(a) + C(b) + E wie..

The following theorem gives a test for sign detection. The theorem does not directly appear in the

works of Akushskii et al., but is a useful and obvious consequence of Theorem 6. As usual in a signed '.'

RNS, the interval (0,M12) represents positive numbers, and the interval (M/2,M) represents negative

numbers.

Theorem 8. Let the moduli mi and the core C(M) be odd, and let (a,) be the residue representation of

a non-zero integer a E (0,M). Then a represents a positive integer if and only if

. a- I 2a)--"

is even.

Corollary. Let the moduli mi and the core C(M) be odd, and let a * b be integers of the same sign in

(0,M) with residue representations (aj and (pd. Then b> a if and only if

2(I (- al) 1 2(p" -2 L,,1,)

is even.

The next two theorems provide formulas for scaling a residue number by a modulus, and extension

of base. Scaling by a modulus (or a product of several moduli) has been considerably simpler than

general scaling, and the primary computational complexity has been the extension of base relative

to the modulus (moduli) used for scaling, fundamentally a mixed radix conversion process. A mixed

-% :radix conversion relative to n moduli is performed in n-I stages and no general techniques are

known for collapsing the process into fewer stages. The algorithms given in the following theorems

-15 -

•S

Theorem 6 (Akushskii et al.). Let the moduli mi be odd and let (ai) and (Ji) be the residue -- -

representations of integers a, b E [OM). Then a + b overflows the system if and only if

i) (la i + 1i3 m,) is odd and a and b have the same parity; or

ii) (/ai + Pilm) is even and a and b have differing parity.

The second method for overflow detection under addition requires the computation of the core of

the 'sum' in two ways: overflow occurs when the results differ. This theorem does not require that

the moduli be odd.

Theorem 7 (Akushkii et al.). Suppose C(M) + 0 and let a, b, c [O,M) be given by a = (ad, b (6),. .

c = (jai + Pitn). Then the sum a + b < M if and only if

C(c) -C(a) + C(b) + w ,

where

I+
Oor=l. "or ".

Proof. Clearly a + b < M if and only if a + b = c, so the forward direction follows immediately

from Theorem 2. For the converse, assume a + b a M, so thate = a + b - M. Then by Theorem 2

and its corollaries

C(c) = C(a+b-M)= C(a+b) - C(M)

=C (a) + C (b) + E wizi - C (M). "-14 -

S. . .

-,-Lli

- 14° -%

*

i- "-
°".° .i-2

s =. . -.. -.. .,

have the same parity. I.

*. . -

Proof. Let .,

so that y = 8j. By Theorem 2,

a a a
C(a) C(- + -)=2 C(+ EW.e.

so that 22.*..b

g=2
C(a/2)=

2

From the definition of ei, ai = 2pi. e-i mi. Since for i > 7, mi is odd, ci = 0 if ai is even and zi = I if ai is

odd. Thusti = 6iisthe parity function of ai for i = 2,..., n. Thusif,8 = 0, C(a)and

i-2

have the same parity, and if,1 = 1, they have differing parity since w, is odd.

*i Two theorems are given next for the detection of overflow under the addition of two numbers. The '-

first uses the parity information from Theorem 5 as follows. If all mi (hence M) are odd and a sum

,.*. + b is formed (where 0 < a, b <M), overflow occurs when a + b > M, and the resulting residue "."'':.'

representation actually equals a + b - M. Hence overflow occurs exactly when the parity of the

result modulo M is different from the parity expected, based on knowledge of the parity of a and b.

-13 -

~~~~~~~~. . . . . . . . . . . . ....... .. _'. .- __t...,.....q.._. .



[°" :" -.--.- q:- -" .- A A" ' - _ j . . -- . . .

AProof. From Theorem 1, C(M)-a = MC(a) + E ai wi mi. Since the moduli mi and C(M) are odd, a

Aand C(M) a have the same parity, C(a) and M.C(a) have the same parity, and ,ai wi and Z ai wi Mi

have the same parity. Since a sum of two terms is even if and only if the summands have the same

parity, the result follows.

A counterexample to the above theorem is next given in the case that the hypothesis that C(M) be

• ."odd is dropped. Specifically, we show that if C(M) is even, C(a) and Zwi 6i can have the same parity

for odd a. This establishes the necessity of the hypothesis omitted in (1] and the error in the proof

therein. Let (ml, m2) = (3,51 and let (w7 , w2) = {1,-l}. Then C(15) = 2 and C(5) = 0. The odd %I

integer 5 is encoded as (2,0), and since both components are even, ,wi 6, = 0, completing the

Ih example.

Among other things, Theorem 4 shows that in the case where all the moduli are odd, scaling by 2 can

be performed by checking the parity of a = (a), subtracting 1 from each ai if the parity is odd, and

multiplying each ai by the modulo mi multiplicative inverse of 2. The computational requirements -

for checking parity thus consist of a core calculation, parity checks on the a,, and the summation .. ,

I Ewi 6i.

In the case that one of the moduli is even, the parity of a is known immediately. Scaling by two for ,'-. - --

the odd moduli components is trivial, but calculation of the scaled result for the even modulus is

normally performed by an extension of base. The next theorem uses the core to compute the residue

of a/2 relative to the even modulus. Without loss of generality, the even modulus is assumed to be 2.

(This theorem is actually a special case of Theorem 9 below.)

Theorem 5. (Akushskii et al.). Let my = 2, let a = (aj be even (so al = 0), and let wy be odd. Let a/2

= (f1 and let 8i be the parity function on ai. Then f = 0 if and only if C(a) and

1.U

- 12 -
-~.1* *** ** * ....... o.



" Theorem 3 (Akushskii et al.). C(M- a- 1) = (C(M) - wj) - C(a).

Proof. Write a = ximi + ai for each i = 1...,n, where 0 : ai < mi. Then

M -a - m. - x. - Un. + (Mi - a, -1),

and S

:" ~ ~~~0 : mi -Qai - 1< M. fori-1 ..... n.-':-:

Thus

(M- a -___ 1) t [ -a

.M.

A
=EZ w(M. -X. -1).-

I £

=CM - C(a) - E w.

The next theorem characterizes the parity of a residue encoded number in the case that all the

moduli are odd. This theorem provides the basis for sign detection, magnitude comparison, and

detection of overflow under addition. It should be noted that both the hypotheses and the proof of

the converse direction of the equivalence are incorrect in E1i, where the statement of the theorem

IL does not require that C(M) be odd. (A counterexample in the case that C(M) is even is given below.)

Theorem 4 (Akushskii et al.). Assume the moduli mi are odd and the core coefficients wi are chosen

so that the core C(M) is odd. Let a a (ai) (mod M), and let 6i be the parity function on ai (i.e., 61 = 0 if

" a is even, 6i = I if ai is odd). Then a is even if and only if C(a) and rwi have the same parity.

|° "'--.

U 4 4,--4 .4



Proof.

£-

C( + b-a.-

L, t
=Ca + b. - + +  me.

o - a + Zw, h

E W +Ewi  A.',

L i
Coolay = w) C-- ++w -- +i wi where

= -1 or 0.

Corollary. C(a - b) C(a) - C(b) + Z wi, r, where

I= - or 0

L

A A ACorollary. If ai -bi 0 for i 1,...,n, then C(a + b) C(a) + Cl). In particular, C(m + in) ,C(m +

C(m) ifor1Si i= n.

The next result characterizes the symmetry of the core and can be interpreted as saying that the core

L_ is approximately odd in [0,M) with respect to the midpoint of the interval. This theorem will be used

to derive a bound on the range of C() on [0,M), important for the selection of the wi.

%4-



IM

The following examples are given to illustrate the techniques of Akushskii et al. The moduli set

chosen for all examples is ml= 7, m2 =9, m3 = 11, and thus M=693. The coefficients of the core I

function are w, = -1, w2 -1, and w3 = 3. The orthogonal basis elements are By = 99, B2 = 154, and

- 3 =441. The cores C(M)= 13, and C(B) =2, C(B2) =3, and C(B3) =8 are computed from the definition

(1). Using (4), the core ofa= (al, a2, a2) is given by *1

IC (a)( 13 12 a, + 3 a 2 + 8 aJ 13  (6)

For 0!5 a < 693, the minimum core is Cmin =-2, and the maximum core is Cm,.= 14. Hence the only

critical cores as computed by (6) are IC(a)113 = 0, 1, 11 or 12.

I--

" Example 1. Determine the parity of a = (2,1,1).

i From (6), IC(,a)I 13=2. Since this is a non critical core it follows that C(a)= 2. The sum ,wi 8i= 2 ,

where 6 is the parity of a,. Since Ewi 8i and C(a) have the same parity it follows from Theorem 4 that

"* is a is even. (The decoded value of a is 100.)

Example 2. Determine the sign of a - (3,5,5).

Let2"a M = (12"317,12"519, 12-51Ii) (6,1,10). The core of 12"a m is 4. The sum ,,a;, where 6i is the

parity of j2a, Ir,. is odd. Hence f2. IM is odd and so it represents a negative integer. (The decoded

r' value of a is 500 E (M12, M), representing the M-complemented integer a-M = -193.)

*. Example 3. Extend a = (6,8,4) to base p = 5.

" From (6), C(a)=3. Then using Theorem 10

-2.

- 24 - 2

---'- -, .. ,--., - ,-, ---,.-,% ,'-.'- ,' ,x -x'.-," ," .. ,., ," , - .... ', ', , .','. . .. ,"."...... . ... .,-...,..... ... .. " .".,.,-.. ... ".,..



- . .

ja(-1)99 6+ ( 7 • 8+ 13 4+ 3 01 5= 13 15 13 15*1 5'1 5' is •.

(The decoded value of a is 125.)

Example4. Compute the core of a = (1,8,8).

From (6), (C(a) 1r3 = 12, a critical core. The method of descent and lifting is applied.

DecentThe core of (1,8) relative to my = 7, m2 = 9 is computed for the core coefficients

W. = W2 = 1. The orthogonal basis elements are computed as By = 36, 82 = 28 with cores

C(B)=9, C(B2)= 7, and C(M) 16. Then

C(1,8)= 19- 1+7- 8116=•,

This is not a critical core since the 2-moduli system has no critical cores.

Lifting. Theorem 10 is applied with p = 11, observing that 11C(M) 11 = 11/16 lii 9. Then 13, the

extension of (1,8) to the base p = 11 is given by

L 10=11- 9 9il- 1+1I- 7. 9i. 8+163- 91,1- 1(modt1)

=14. 1+8- 8+6- =8.

Equation (5) is then solved to obtain k = 0. Since C is 11- separable, this implies that a = (1.8,8) is in

the first subinterval of (0,693) and hence C (a) = (C (a)[ C(M) - C (M) = 12 - 13 -. (The decoded

value of a is 8, the core of which can be directly computed from the definition (1), yielding the same -. '-

result.)

- 25 -

.- ... ... .........o•.. ° . . ."• = . . . . .. . . . , .. o..... 4 * . '* . . • . ' - ='. . . -. . -. . . - .. . - ., ', .o . - .T° -
"'-"-" -" J - -. .. ' " ' ' " % 4'r t , 4- "-

%
" ' 4-" " " , , " " - -* ', " . ' ."% """% .'' "" ,; _ .



7* 7. 7707 1,7 71

r

IV. REDUNDANT MODULUS CORE CALCULATION

The use of the core function for performing the difficult RNS operations is practical only if the core p

function can be efficiently evaluated. While the method of Akushskii et al. is efficient for non-critical

cores, the methods for the unambiguous evaluation of critical cores can be quite cumbersome. In

particular, critical core evaluation could not be embedded in a flow-through architecture since the 0

length of the computational path depends upon intermediate results. In this section we introduce a

redundant modulus which eliminates critical cores altogether. Calculations modulo this redundant

modulus must be performed for all computations upstream of a required core evaluation, so that P

when the core evaluation C(a) is required, the residue of a modulo the redundant modulus is known.

The core evaluation is then simply an inner product of the residue components of a with fixed

weights, where the arithmetic is performed modulo the redundant modulus.

Let C and C be the minimum and maximum cores on 10, M) as before, and choose a new,

redundant modulusm > Cma - C, with (mn.,m) I for i = 1, n. Then foraE [0, MK_

" IC(a)Im,,, will uniquely determine C(a) by

I c r, l ,,. ., if I C (a) I mn. , < mn,+ + Cmi, "''

C(a) =

• *. ". .. .. . .. . .. .. . ..... .. . .. . .. .

SC (aJ 1mn . - rn + otherwise. ." ,..i

As shown in Theorem 1, 7 , ,

.. .M. C(a) E a.. .. ... + a. C(M)... ........

.. . . . .. . . . . . . . . . . . . . . . . . . .

-26 - =..



* - .v *--7 .Th*.. ' -

P IJCWa) M a n+-1 C(MI L 7

-m i" iMc m 0 7
a+1 n+1 n+1 

.n+.

All coefficients can be precomputed, and thus the core is calculated as a modulo n.., inner product

of (a,,...,a a,,. )with a fixed vector. ..

Next note that the extended RNS on (m ... In m,,,1 uniquely represents integers in the interval

" [0, M -m . We emphasize that (7) is guaranteed to uniquely determine C(a) only if a (a,... a

a . E [0, M). By chosing the redundant modulus to be larger than the length of the range interval

of C on an expanded domain (e.g., [0, 2M)), all cores of integers in this new domain can be

unambiguously computed as well.

With the provision that a E (0, M), redundant modulus core calculation can be used directly in the

algorithms for decoding (Theorem 1), parity determination (Theorems 4 and 5), scaling by a modulus

(Theorem 9), and extension of base (Theorem 10), and highly non-linear cores will suffice for these

applications. However, Theorems 6 and 8 (overflow under addition and sign detection) require the

"" capability to compute C(laIM) for a[o, M), as they take advantage of parity changes upon

wraparound modulo M. In the redundant RNS, wraparound will not occur under the addition of two

integers a, b E [0, M), and the result will be uniquely represented as an integer in [0, 2M) "

*. [O,M'mn,1). New algorithms are formulated below for applying the redundant modulus core

calculation to these problems. A relatively linear core function is required for practical

implementation.

Let C and C be as above and let C*. and C ,, be the minimum and maximum values of C on

[ (M, 2M), respectively. (Thus Cmin = Cmin + C(M) and Cmax = C +,, + C(M11) The proof of the

following theorem is trivial.

- 27 -
• ° ° "* " w. ". . ..""

• •
•

•
"-" - • " ,•°,.• . ° . % * , -



5 Theorem 13. Let a, b E [0, M). Then a + b:

i) overflows fOM) ifC(a +1) >C , and

ii) doesnotoverflowOM)ifC(a~bi) C

If C.!5~C(a *b) : C,~ a + b may either overflow or underflow.

The ambiguous case is analogous to the ambiguity present in the methods of Akushskii et. al. when a

critical core arises. However, far fewer ambiguous cases arise in the application of Theorem 13 than

in the application of overflow detection using Theorem 6 or 7 above. For Theorems 6 and 7, C(a),

C(b), and C((a + bIm) must be evaluated. Thus the following cases are ambiguous, which can be

3 resolved by the method of descent and lifting.

i) C(a) 5 C -C(MorC(a) C(M + C. (i.e., the core of a is critical)

Vii) C(b) SC -C(MorC(b) C(M + C ~ (i.e., the core of bis critical)
mrai

L(i)C(a+b) s C -=C(M

(iv) C(M)+ C.! SCa+b)5C

(v) C(a+b)Z2- C(M)+C. .

- 28 -



(Conditions (iii) - (v) are equivalent to the statement that C(kz + bm) is critical.) Of these possible five

ambiguous cases, only (iv) remains an ambiguous case for Theorem 13. For this case, the method of --.

descent and lifting can be applied as well.

Note next that Theorem 13 requires significantly fewer calculations than either Theorem 6 or
1

Theorem 7, since only C(a + b) must be computed and compared with two precalculated constants.

Moreover, no restrictions on the parity of the m or C(M) are required.

lp-
Finally, to apply Theorem 13 using the redundant modulus core calculation, m, must be chosen

satisfying m Z C',, - C,,, so that all cores of integers in the interval [(0, 2M) can be computed.

We next develop algorithms for sign detection and magnitude comparison using the redundant core

calculation. These algorithms also involve some ambiguous cases, but these cases are shown to"-

I coincide with those cases for which the problem is ill-conditioned. If the RNS represents signed

integers, calculation of the sign of a is ill-conditioned if a is near M12, and comparison of two

numbers a and b is ill-conditioned if either a or b is near M12. The dynamic range of an RNS should be

sufficiently large so that the computational outputs can be unambiguously interpreted, and a buffer

zone around M12 should be maintained. Calculations should avoid this interval, since small

perturbations of numbers in this interval can cause large changes in the values they represent.

L

Theorem 14. For a E [0, M), if C (2a) <C". then a E [0, M12), and if C (2a) > C,,,,, then a (M12, M).

If C, C(2a) -C, no conclusion can be drawn.

Proof. If C(2a) < C*, then 2a [ (0, M). If C(2a) > C, then 2a C [M, 2M).

-..<

The buffer zone around M12 which should be avoided can now be given explicitly as

-. 29
.."..'....'..'..-..:..." ....... ............... ..................-........



. .. "

mmaC C,(2a) C

For example, forthe core function shown in Figure 1(a) (M= 693), this buffer zone is the interval

1264, 434]. As before, use of the redundant core calculation for Theorem 14 requires

m C M .

To perform comparison of two numbers, the following lemma is required.

Lemma. For any integers a and q, C (qM + a) a C(a) (mod q).

Proof. By Theorem 2, C (qM + a) C (qM) + C(a) = q C(M) + C(a) a C(a) (mod q).

If a = (a,, .... ,ab = (M) .... fi ,) tOM)and b- a < 0, then in the redundant RNS .8- a) =

m. M + (b-a). Hence by the lemma, calculation of the core of (f - a) modulo m.., will uniquely

determine C(b-a).

Algorithm for Comparison. Let a, b E [0, M), with [0, M12) representing positive numbers and (M12,

M) representing negative numbers, as usual. Compute the signs of a and b using Theorem 14. If the

signs are different, the comparison is complete. Otherwise, compute the sign of b - a to complete

the comparison.

Notice that b -a will be near M12 only if

(i) one of a or b is near M12 and the other is near 0 or M, or

(ii) neither is near M12 and one is positive and the other negative.

,-i- .-



Comparison of a and b fails only under condition (i), an ill-conditioned case.

Example 5. Compute the core of a = (al, a2, a3, a4) = (1, 8, 8, 8) using the same non-redundant moduli

and core function for the examples of Section III, and using a redundant modulus of

M4 =32.

0

Using formula (7), the core of aE(O,M) is given by

lC(a)132=23 " a1+25- a2 +23- a3 +25- a4 l2.

Hence C(a) = 1607 132 = 31, which uniquely determines C(a) =(C(a) 32 -32 = -1. Thus a critical

core is avoided and the descent and lift algorithm is unnecesary.

Functional hardware designs for performing scaling and thresholding using the redundant modulus

core calculator are next discussed. These are included to give an appreciation of the hardware

simplicity and short latency times for performing the "difficult" RNS operations using cores. Similar

designs for other operations can be readily conceived.

These designs make use of several custom VLSI circuits designed and currently being fabricated by

the authors, to be reported elsewhere. These circuits permit calculations of the form Z ciai(rodm)

for fixed weights c and as many as six inputs a. The calculation is performed in a single 50 nsec clock

cycle. Thus these circuits permit a one-cycle calculation of the core and a one-cycle calculation of the

other inner products required for the theorems above.

Design services and silicon compiler provided by Seattle Silicon Technology Incorporated



Shown in Figure 2 is a hardware architecture for scaling by a fixed integer q with (q, m) = 1. Scaling

is performed by extension of base to the modulus q, subtraction (yielding an integer evenly divisible

by q), and multiplication by the multiplicative inverse of q. The residue components (a) are

simultaneously input to a core calculator and an inner product calculator which computes the

modulo q inner product required in Theorem 10. The outputs of these two devices are then input to S

a programmable read-only memory (PROM) which completes the extension of base. This result is

then fed to a PROM which computes a subtraction followed by a multiplication with the

multiplicative inverse of q. Thus n +4 devices are required, and the latency of the calculation is three

clock cycles. The procedure can be pipelined to produce a new scaled result each clock perod.

Figure 3 illustrates an architecture for comparison of two integers a =(ai), b =(6i) r [OM). In the first

clock period, the cores C(2a) and C(2b) and the residue representation of 2(a-b) are calculated. In the

second clock cycle, the algebraic signs sgn(a) and sgn(b) are found as in Theorem 14 using a

programmable array logic (PAL) device, and the core C(2(a-b)) is formed. In the final clock cycle the

logic of the algorithm for comparison is implemented in a PAL.

-- 32 -

7• %. -.



Calculator

PROROMmn

with thr ghts) of2 nM

imL

Eai WiL
C 33)

............. P...M.........



CoreA
Calculator

sgn (a-b

PPLA

2-E-

2. Ec~+.1~i

Core

2-Z-
124 12n l -,

'igure 3~~~~~~~~~...................s (al.... + 1) b P I,,. ) [,)rqie



V. SELECTING A CORE FUNCTION

Practical implementation of residue class core functions is contingent upon creating a methodology

that finds an appropriate function. For a given moduli set, such a method should lead to a core

function which solves problems such as parity and sign determination, allows scaling and basis

extension, but which has small enough range to make its evaluation practical.

Akushskii et al. discuss some partial solutions to the selection of the core. Nevertheless, the general

problem is not undertaken. In this section a general methodology is presented which allows one to

find the core which is "optimal" for the application at hand. First a decomposition of the core

function is introduced and used to find an upper bound of the core range. A summary is then given

of all conditions the core function should satisfy to maximize its utility. Finally the selection of core

functions is formulated as an integer optimization problem.

The analysis of the variability of a core function is possible by first decomposing it into a linear part

and a periodic part of period M. Let

C (a) = L (a) + P (a)

where

L(a) = E w (almr) = aC(M)IM

P (a) - (w ai m)

-... . . .. . . . . . . . . . .

.. . . . .......... . .. °*



the weights of the core function are chosen so that C(M) is positive, the linear part is increasing and

:s minimum and maximum are attained at 0 and M- Irespectively. The extrema of the periodic part

Dllow immediately by separating the weights w into groups according to their sign.

rn-I

P /= (-iv.) £-A---- •

m. 9 IM.is: & t,•

Nhere I. = 1 i - n: wi>O},
= . . .. 5{1 < 5 n: wi< O}. }. ..

Bounds for the extrema and range of the core function follow immediately from the decomposition.

These results shall be used to define the optimization criterion to find an applicable set of weights.

Theorem 15. The extrema and range of the core function satisfy the following inequalities

IL

C . ---- [-P i '
"'""

min mn'

C = P Mac -" C(M ..

rangeofC< P.. +  -C(M)+ Pmi.

Lemma: Let 0 < a < b < M. If C(b) - C(a) a C(M), then

Mb - a -C( (C(M) - P + P -'""
C ( N M = i n "- . - , .

36 -

• °,.%

• . .°°oo.°.- -. . .. . o.. . . . ° % . -, . *, .. ..



of. Forany aEO,MJ, 

a a
- C(M + P C(a) < C(M) + P

M min M max'

!quivalently

M M
(C (a) - ) <-a a <-(C (a)-Pm

C (M) C(M)

e lemma then follows by using the upper bound for a and the lower bound for b. 4.

eorem 16. The core function C is m-separable if

C(M) - P + p

C(M) rn

e quotient shown in the left hand side of Theorem 16 may be considered as an index which

vides a measurement of linearity of the core function. This quotient varies between - = and 1. It

ces values close to 1 when Pmax- Pm,n is close to , i.e., C(-) is close to its linear part L ().

e last two theorems and the results in Section II are now used to define the criterion and

nditions for the selection of a core function. In Section IV the redundant modulus is chosen larger

3n the range of the core function. It follows that a practical core must have a small range, so that

optimal core function is defined as one having minimal range over all core functions for a fixed

)duli set. The last inequality in Theorem 15 is used to define the functional to be minimized. The

thors' experience indicates that the bound for the range is tight when close to the optimal -

ution and that the process actually does lead to core a with minimal range. The conditions the . -

,e function should satisfy depend on the particular application at hand. The ones presented

37 :. .. ... "::

_; :,-.' _,',='.._ - ... _..............:...,.....,.... -. .. ,,....'..,.,...- ..... ,



Step (i) Verify b = 0.

Step (ii) Compare ri and b. If ri < b, [a/b = qj and the algorithm is complete.
0.

Step (iii) Write

r. SL(ri r

6 SL (r i ) b

SL(r.) r.
S(SL(r). b).

SSL (SL(r ). b)- SL (r.) b

Define q,i = + SL, (SL (ri)-b), and ri+ = a - qi+ Ib. Return to step (i).

J.

rove convergence of the algorithm, we need only show that 1_ SL, (SL (ri )b) - [ri / b]. By

iition, SL, I always. If SL (r)-b > Lt, then SL, (SL (r)'b) = 1. Otherwise

SL (SL(r )" b)- SL(r)Y 6 sL I<S L(r )" r.

ce the quotient

SL (r )- r.

S (SL(r.) b). S (r ) b
1lL L i

establishing convergence.

odification of the above algorithm is next presented which has faster convergence for relatively

3r core functions. However, this algorithm is more difficult to analyze, and a general proof of

rergence has not been obtained in terms of the parameters involved. In the first division

rithm, the sequence of quotient estimates qi converged monotonically to (ibi; in the next

- 51 -

-' -' -'----" " 7 ,, ¢ ,:.h¢"-. - "- - J " . . .- -. - ". ". """""""- , . . , -" . "•••" ' , ..-



L- C(M
SL(c) max1 (-.) II

iSection V1, for any integer a, 0 :5 a :5 L, sL (C(a))a :5 L. We next define a function SL (0,L)]- N

iteratively in terms of sL. Let a, = a E [ 0,L I be given. Let ci = C(ai), Si = SL (c1), and define

-siai. This procedure terminates when Sk* I = 1, sk > 1, and we take

S S2 ...* Sk, aigain giving SL(a)a 5 L. We claim also that SL (a)a> L/2 - AP-M IC(M). To prove

assume St (c) =1. Then

mn

I thus 'A

L - C(M
C > + P.

2M in*

is if x has SL (C(X)) =1,

x> (C(x) - P M/C(M

L AP- M
2 C(M)

ce by the definition of 5L, SL (SL (al-a) 1,7 the claim is established.

;ume the redundant modulus is chosen such that all cores of integers in (O,L) can be.......

ambiguously computed by the redundant modulus method. Define L1  L 12 -dP-M/ C(M)

jorithm for C ision I. Let a,b C 0 ,M). The quotient Fa/b/ is computed iteratively by the...

lowing steps. For initial conditions, take qO 0, ro a.

r~S

........



I. ALGORITHMS FOR DIVISION

any number system, division is the most computationally complex of the fundamental arithmetic

)erations. In the RNS, division algorithms have been so complex that the system has been judged

isuitable for computational processes requiring division. RNS division algorithms have been

-esented by Szabo and Tanaka [4], and more recently, division algorithms using the core function

ive been presented by Akushskii et al. [7]. However, even the core-based division algorithms are

ctremely cumbersome, and cannot be utilized in a high-speed real time signal processing system.

this section, a new core-based algorithm for general division is presented. By previous standards,

ie algorithm is very efficient, and is competitive with the usual binary system algorithms for

vision. Two algorithms are presented: the first is guaranteed to converge for any RNS and core

nction, while the second has superior convergence properties for well behaved core functions.

oth algorithms are iterative, and thus are perhaps not suited to flow-through architectures for high

)eed signal processing. However, the algorithms might well be suited to a microcoded general

urpose RNS arithmetic unit.

a core function is approximately linear, then for b bounded away from zero, a/b C(a) I C(b).

loreover, since P(a) = C(a) - (C(M) I M)a does not increase with a,

im C(ka) a
k ..uC(kb) b

/e will temporarily utilize the expanded dynamic range provided by the redundant modulus to

nprove the estimate of a/b. At each stage of the algorithms, an improved estimatQ q of the

uotient is found. The process terminates when 0 :5 a - qb < b. As in the algorithms for

Dmparison, core-derived upward scaling of an integer is required. We define a scaling function

milar to those defined in Section VI.

et an integer L > 0 be given and let CL = max (C(x)/ 0 s x _ L. Define an non-increasing

Jnction s:f Cmu, CL." N- (0 by

-,49 -

, %....'-'.-..-....'........ .-.-.................... .... .. -.. . . ... . .. . • .. .. _ . •.. . .. ... -.



a, b C(ai) C(b1) t~ (c) a', b', S(a'i,b'i) f

0 (3.8,10,11) (5,1,1,13) 6 8 (2,1,6,2) (1,7,4,9) (3,0,6,11) 4

395 397 226 169 171

1 (4,1,5,4) (5,0,2,12) 12 13 (0,6,7,2) (4,4,9.2) (5,3,6,10) 6

676 684 546 130 138

2 (3,6,10,12) (2,0,3,28) 13 15 (4.5,5,23) (6,1,5,21) (5,4,9,5) 4

780 828 599 181 229

3 (3,4,9,20) (6,7,3,20) 12 18

724 916

Since C(b3) -C(a3) 6 6> Pmax, - Pmin,, b > a.0

AO



aC(M) +Mmn mx

M
a +(P mnPmtCM

Then

M
a =a-t(C(a):5(P -P.

max minC(M)
and

M
b'= b -t(C(a)) < 2(P M=-P.)i

since the condition on the cores implies that lb-a I< (Pmx Pm, Ml C(M). Thus a sufficient

condition for S(a', b') a: 2 is

M

Example 7 Let the moduli set be (7,9,1 1) with core coefficients (-,-1, 31. Then AP =(6/7 + 8/9 +

30/11)= 4.47. Since 5 OzP) .> C(M)= 13, the first algorithm cannot be used. For the second

algorithm we must have

4 (4.47)- 693
L =953,

13

so the redundant modulus M4 =32 will suffice. Since calculated cores of 30 and 31 represent true

cores -2 and -1, respectively, L will be the largest number whose core does not exceed 29; viz,

L =1517.

We compare a0  a =(3,8, 10,11) =395 and b =(5,1,1.13) =397.

- 47



Both functions t and s can be implemented by table lookup since their domain is small if the range

of the core function is small.

We next iteratively define a function S(a,b) for a,b,E (O,LJ as follows. Take ao a, bo b. Let

c= min (C(ad, C(bdj and si = s(cd, and define ai+i = si*ai, bi+i = si-bi. This procedure is iterated

until Sk .v = 7, sk > I (usually only one or two iterations are needed). Then S(a,b) = sos ... sk. Thus

5 (a b)-a < L, S (ab)b :5 L, and min (s (S (a~ba), s(Skab)b)) =1; i.e., based only on knowledge of

the cores, S(ab)-a and S(ab)b have been upward scaled as much as possible.

Second Algorithm for Comparison. Assume C(M) > 0 and let ac a =(aj), bo b =(ad) [0(,L].L9~

(i) If a, Pi for i 1,...,n, then a=b.

(ii) If C(a,) - C(bd AP, then a > b and if C(bi) - C(a,) a AP then b >~ a.

(i) Let c, min (C(ad, C(bd), and form a! a, cb=a -t(J Te and b are

nonnegative.)

(iv) Compute ai I~ S(a.i b~da!. b,,, S(c4, b!)b and go to (ii).

A condition on L (and therefore also on mn ,y) is next derived which guarantees convergence of the

algorithm. This is done by examining worst-case behavior. It can be readily seen that convergence is

ensured if each S4'a,, b,) > 1; then ja,,1 - b 1, > /ai- b, l, and the hypothesis of step (ii) will

eventually be satisfied.

We assume, without loss of generality, that C(a) < C(b) and C(a) - C(b) I< AP. Then

t~~~~% (Ca) 
.)

Ob0



,,
s = 

s- -a- ' . S r - -. . . . .

7 7

algorithm is iterative and requires the use of a redundant modulus. The redundant modulus must be

chosen sufficiently large to guarantee convergence. '.

As in Section IV the redundant modulus is chosen to satisfy M. +I > Cmax Cmin. The method of

redundant modulus core calculation can then be used to unambiguously determine cores on an

interval (O,L] D [O,M), where L depends upon mn j. Let CL be the maximum core on [O,LJ. Given

integers a,, bi ( [O,L), the comparison algorithm will find integers ai,., bi, ( E [O,LJ satisfying (i) ai -.

bi if and onlyif ai, - bi, ,; and (ii) Ja,,, -bi J.., > ai-bil. Thisis iterated until the firststep k for "-

which IC(ak) - C(bk)I> AP. By the lemma above, the comparison can then be determined.

To obtain ai, I and bi . from ai and bi, a subtraction and a scaling are performed. From the cores

of a and b, a number is computed and subtracted from both a and b giving nonnegative results. . .-

From the cores of these differences, a scale factor greater than one is computed and multiplied by

the differences. These results will be guaranteed to lie in [O,L] and are taken as ai,, and bi,,.

Hence we must define functions on cores to give the subtrahend and the scale factor. As mentioned

above, it is required that C(M) > 0.

Let Z denote the integers and N the natural numbers. Define a non-decreasing function

t: [Cmin, Cd.- N by t(c) = max [ ( c - P, )" MIC(M)], 0). Then for any integer a 2 0, 0, .."'."

!Ct(C(a)) a + P, .

M

Define a non-increasing function s: [Cm,,, CLI" N- (0) by S

,.o- . -, °

L - C(M) .'..,."

SOn ma
s~c) = max Pmin).  ,"''''

Then for any integer a, 0 5 a - L,

(Ca) - P.in)M
s (C(a)). a S L since a z

C(M)

a'.

- 45 -"-'-'

. . . . . . . . . . . . . . .



If the cores are calculated by the redundant modulus method, then by the lemma preceding the

algorithm of signed comparison in Section IV, C(a j - ,. a, -flU, an, M n i) C(d) (mod m ).

Thus redundant modulus core calculation can be used for the algorithm.

To select a core function which allows this comparison algorithm, the linear condition 5AP<C(M)

should be included in the list of linear conditions for the integer optimization problem formulated in

Section V.

Example 6. Let the moduli set be (23,25,27,29,31) and the core weights be (-3,-2,4,-1,3} as in Figure

1(c). Then
m.-1""I"

AP=I w. l12.51r.), m. - -.

and C(M) = 67. Since 5-AP < 67, the algorithm applies.

(i) Compare a - (60, ,22,2) and b = (7,0,5,23,10). Then C(a) 6, C(b) = 24, C(b) - C(a) =

18 > AP, so b > a. The values are a = 1,000,000, b = 5,000,000.

(ii) Comparea = (6,0,1,22,2) and b - (12,0,2,15,4).

Then C(a) = 6, C(b) = 11, so/C(a)- C(b) / <,4P. Form d=(6,0,1,22,2)- (12,0,2,15,4)

(17,0,26,7,29). C(d) = 58 $ 2"P+Pmax, so b>a. The values here are a = 1,000,000, b

= 2,000,000.

Note that the condition 5.AP < C(M) is a relatively strong linearity condition: while the core of

Figure 1(c) satisfies this condition, the core of Figure 1(a) does not. The next algorithm for

comparison relaxes this linearity condition at the cost of increased computational requirements. The -

-44-
.''.~%.4 . .* * *'*. -



C .a+ P (£M. b+P
kM M M

- - .

C(M) -
M min

and hence a-b > 0. Since C(a) * C(b), a* b, obtaining the strict inequality. To show (ii), first note .

that for any integer x,

(X -P 5"5
Cx-P MC(X) - Pi

Thus Le

la-bs JC(a)-C(b)I+(P,. -P

C(M) Pmin)..:

First AIgorithm for Comparison. Assume 5-AP < C(M). Then integers a =(a), b = (Di) [ 0,M) can

be compared via the following steps.

(i) Compute C(a) and C(b). If C(a)-C(b) z AP, then a > b, or if C(b) - C(a) Z AP, then

b > a. If either condition holds, the algorithm is complete.

(ii) Otherwise, I C(a) - C(b) f < AP. Form the difference d =(ai - Pij) E [0,M) and compute S

C(d). if C(d) 4 2 (Pmax - Pm1 ') + Pma, then b < a; otherwise b > a. .,-.

The validity of step (i) of the algorithm follows immediately from the lemma. For step (ii), the

lemma implies Ia-blI_ 2M-APIC(M). Thus d lies in one of the intervals 11 = [0, 2M.APIC(M)) or

12 = [M-2M.API C(M),M). Since max ((C(x) l xEIjj < 2-4P + Pma, and min (C(x) IxEI2 J> C(M)- 2.IP

+ Pmi, it follows from the algorithm hypothesis that C(11) n C(12) = 0. Thus if C(d) E C(rz), dEl 1 ,

and if C(d) E C(12). dE 12, establishing step (ii).

- 43 -

~ .. '.-...- -
-° =' . .



Vl. ALGORITHMS FOR COMPARISON

In Section IV, an algorithm utilizing the redundant modulus core calculation was given for the
comparison of two numbers in a signed RNS. The algorithm requires the capability to determine

whether a number lies in the upper or lower half of [OM). This is accomplished by maintaining a

buffer zone around M12 so the determination can be made by an examination of the core. In this

section, two new algorithms are presented for comparison in an unsigned RNS, and no restrictions

". on the numbers are assumed. The first algorithm is computationally simple: to compare a and b,

only C(a), C(b), and C(a-b) are required. However, a linearity condition on the core is required, viz.,
5 (Pmax - Pmi) < C(M). The second algorithm is iterative, and is guaranteed to terminate if C(M) > 0

and if the redundant modulus is chosen sufficiently large. Convergence can be hastened by

increasing the degree of separability of the core or by increasing the redundant modulus.

We begin the development of the first algorithm with the following lemma. Recall that Prin and

Pmax were defined in Section V, and that

C(M) C(M
.a+P. SC(a) S .a+P .

MrM

We define AP = Pm n Pri, so

M.0 < Axp = liv l " -_ < E:1 vil.,.....
M m.

Lemma. Let a and b be arbitrary integers, and let C(M) > 0.

(i) If C(a) - C(b) Z AP, then a>b .,,.

(ii) If IC(a) - C(bj L<AP, then la-b 1< 2M.AP/ C(M). .'-:

Proof. For (i), observe that

m - Pmn C(a) - C(b) ;

4 .

-i

% ~~~~~~~~~~~~~~~~~~~~~~~. '_'% .. .., .. . ." ... .. , . ,..,. ..-.. ,. .. -. .... -.. . . . .. ......... . . . . .. . . . ...-. '.: '



Proof. (i) and (ii) follow immediately from the definition of Sn and from C(O) =0.

I (i~ii) Follows since Pm.. j + a.(M)IM S - n for all a Sn.

- (v) Let n > K = Pmi, then n 2: K + I > -Pmen. which in term imlies that 5,, is empty.

* Algorithm for search of Cmin.

Step 1. Start algorithm with initial values at c, =0, n, 1, and i1  St5.

Step 2. Given a, with C(a,) =ci I - n,,, evaluate the core of successive elements of the set

*Ji = (a, + 1. a, +2..,m) fl S,,j until either (i) an integer b is found such that C(b) = -K, or (ii) an

integer b is found such that -K < C(b) < ci, or (iii) CQx) t ci for all x E .1,. If (i) or (iii) occur then Cn LP

has been found. C,,,, = C(b) in case (i), and Cmin = COad = c, in case (iii). in the event of case (ii).

step 2is repeated with aj, I b~, 1 = C(b), and n,, 1 -C(b).

Example. In the RNS with moduli set (7,9,11) consider the core function with weights (-1, -1,31.

Then Pmin = -30/11, K = 2 and 02 is the set of multiples of 7 and 9. From Theorem 17, max S, < 92,

U and max S2 < 38. The first iteration of step 2 evaluates the core of the elements in the set

I = (7,9,14,18,21...,.911). Since C(7) = 1, then a second iteration of step 2 is started with a2 7,

C2 =-1,n 2 2, and 2 (9,14,18,21,27,28,35,36). Since C(9) -2 =-K, it follows that Cmn =C(9) =-2.

- 41-



.'0

In the case of an RNS with small range the extrema of a core function can be found through an

exhaustive search. For moderately large systems an exhaustive search may prove prohibitive. In the

remainder of this section an algorithm is presented for the evaluation of the minimum of a core

function. The authors' experience suggests that the method has fast convergence even for an RNS

5 with large range. The algorithm is based on a search through a chain of dynamically chosen sets with

successively smaller ranges. Since C(O) = 0, the algorithm starts by searching for an integer in the

'. domain of the RNS, which has negative core. Since downward jumps of the core function occur only

at multiples of the moduli mi for which wi is negative, i.e., i E L, the search is restricted to this set.

The first step is then to search through increasing multiples of those moduli until one with negative

"" core is found. If this occurs, say C(al) = - n1, then the algorithm goes into a second phase with a

search through multiples larger than a, and with a core value less than -n7 . If such an integer is

found, say a2 with C(a2) = -n2, then the second phase is restarted replacing a, and n, with a2 and

n2. The sets of integers for which the core is less than or equal to -n forms a decreasing chain, so the

1 successive phases of the algorithm take place in successively smaller domains. This assures a fast

stopping rule for the algorithm and convergence to Cmin.

* Let D = a i , = 0 for some i a 1. J, be the set of multiples of the moduli mi for which wi is

-*" negative. Let s, = (a E [ O,M) n .2 I C (a) < - n ), for n z 0, be the chain of sets through which the

search takes place. The search algorithm is based on properties of the S-chain given in the theorem

I- below.

Theorem 17. The chain of sets Sn satisfy the following properties:

(i) The minimum Cmin is attained in S.

(ii) The chain is decreasing, i.e., Sn D Sn I.

(iii) The maximum element of Sn is bounded above by -M. (n + Pm,) I C(M).

(iv) The chain terminates after K steps, where K ['Pmin; i.e., S, = 0, for all n > K.

- 40 -



0

These conditions for the optimization problem arise as follows. Condition (i) states that C (M) > 0.

5 Condition (ii) is equivalent to the condition C (M) odd, required for parity determination, Theorem 4.

Condition (iii) states that w and m, are relatively prime, necessary for scaling by mi, Theorem 9. This

condition is equivalent to the existence of a solution to the set of linear equations

U 0

where Pij are the prime factors of mi, and xi and Yij are integers with 1 - Yij < p. The restriction (iv) ._1

follows from the separability condition, Theorem 16, where K, is an appropriate constant, e.g., Ki =

11m, where m, the smallest modulus; will permit lifting and descent. Larger values for K, will .

permit greater separability. Finally the left hand of inequality (v) represents the largest jump the

core function may take. This condition may be used to reflect prior restrictions on the range, e.g., if

five bit representation is to be used then K2 = 32.

The optimization problem can be solved by standard techniques in integer programming such as

branch and bound and enumeration searches (51, [6]. Such methods were used for the case of the

moduli set (23, 25, 27, 29, 31) obtaining a core function with weights (-3, -2, 4, -1, 3) (This

function is m-separable for all m a 2).

Algorithm for evaluating core function extrema. In Theorem 15 bounds are given for Cmax and Cmin, , .

which prove sufficiently tight for closely linear core functions. In many cases however more accuracy

. iis desired and so exact values of the extrema of the core function are calculated.

From Theorem 3 it follows that if Cra is attained at a, then Cmax is attained at (M - a - 1), and that

Cmax + Cmin = C(M) - Zw i. Hence it is sufficient to evaluate only one extreme value of the core

function.

- 39 -..... .......----.-...... . .



t.

include all those required for the algorithms for the difficult RNS operations. Since the range bound

given in Theorem 15 assumes that C (M) is positive, this condition is required. Parity determination,

scaling and rn-separability form the remaining conditions. The separability condition, which

measures linearity of the core function, works counter to the minimization criterion. In each

n particular application this trade must be considered, but by using different values for the constant

K1, below, complete control over this trade is obtained.

- The question of finding the appropriate core function can now be stated as an integer optimization

problem.

A practical core can be found by selecting integers w7 ..., wn, which minimize the functional

, C( + + (_ +.....i~~~Mr + Ia - P.in'''-.

subject to one or more of the following linear conditions as dictated by the intended application.

UA r .
(i) w. m. z 1,

W M

(ii) T w. is odd,

LS
(iii) (wi m.) = 1 forselected i, 1:5 i <n.

(iv) C(M) -PM= +P mi t >KICM),.

(v) max Wi t (-w i ) <K• ':..

I l

- 38 -

. . .. . .m*.*l I .. . ' I " '. ." -*- 'r' '*



algorithm, each qj is a better estimate of (albi than the corresponding q of the first, but the

sequence (qij may alternate about [a/b. Upon convergence, q = [alb] or q = [a/b] + 1; in either case
Iob-qf< 1.

Algorithm for Division II. Let a, b E [0, M), and let qo = 0, r0 = a, 60 = 1, and so = 0.

Step (i) Verify b 0.

- Step (ii) Compare ri and b. If ri < b, then qj is the quotient. *

Step (iii) Let

C(S (r.)" rl
s i+1-SiL2 (SL(r ) b). C(S (SL(r.) b)- S Lr.). b) Irunded

... i+ I % + 6isi+ L

ri+ I / a - bqi, I

* 6 i +I sgn (a-b qi + )

-" It is clear from the earlier remark (viz., lim C(ka)IC(kb) = a/b) that for sufficiently large L, this

algorithm will converge. Moreover, increasing the redundant modulus will cause L to increase and

therefore increase the rate of convergence. Finally, for a given L, the algorithm will converge faster •

for approximately linear cores than for highly nonlinear ones. It is the authors' experience that for

., cores which are sufficiently linear for other applications (e.g., comparison), the algorithm converges

quickly.

In both division algorithms, the scaling functions S can be implemented by iterated table lookup,

. -nd the quotient of cores for the second algorithm can be implemented by table lookup.

* -> -* .. ** . . . . .

. ... . -

1iY 
° ° ' ° -

" 
-"

. , ° °, °.°" °"" . """" ° °° " - .
•

'• ° • ' '• '• ""°" . •°°°' ' . " " °"% "" "" "° ° %"
•

• -"S 2



We next discuss the computational aspects of implementing Algorithm II in a redundant RNS. We

assume 5-AP < C(M) so that the first algorithm for comparison can be used (cf. Section VI). The

integers a = (a ...,an +1), b = (.13 j) (O,M) are given by their residue representatons. For

step (i), it must be checked that not all components Pl,.-.,Bn are zero.

For step (ii), we are given ri = (rll,...Zn + 1). The cores C(r.) and C(b,) are computed by the redundant

modulus method. These values can be input to a table lookup, which signals one of the following

-" conditions: (a) C(r) - C(b) - AP; (b) C(b) - C(ri) A,-', or (c) I C(rd - C(b) ( < AP. If (a) holds, proceed

to step (iii) of the algorithm. If (b) holds, the algorithm terminates. If (c) holds, ri - b = (rij - fi) and

its core are computed. This core can be input to a table, and the decision to continue or terminate

results.

For step (iii), we are given qi = (P,) and Si = ± 1. The core C(ri) is first computed and input to a table

lookup giving sL(rd, and the residue product sL(rd'ri is formed. Then C(sL(r)-rj is found and input to

" - a table giving SL(SL(r.) .rd. If this equals 1, then SL(rj = SL(rd; otherwise the procedure is iterated to

find SL(r). Generally, only one or two iterations are needed. Next, the residue product SL(ri)'b is

formed, and SLI (SL(ri.b) is formed as above. Note that in the iterative process for evaluating the

functions SL and SL,, the cores C(SL(ri)-d and C(SL,,(SL(r)'b)) have already been computed, being

required for termination of the iterative evaluation. Since these cores are small, their rounded

quotient (in residue form) can be found by table lookup. This quotient is then multiplied by

SL,, (SL(rd b) to give si + = (4j).

If 5i = 1, 5,S,, = (6a), and if 6i -1, 6isi,., = (mi- oi), implemented asa table lookup. The new

quotient estimate can next be computed as a residue subtraction.

Next, a - bqi I is evaluated and its core computed via the redundant modulus method. Its core is *. -

also computed by the second corollary to Theorem 2. If these results are equal, a - bqi+I > 0,

otherwise they will differ by C(M) and a - bqil < 0. This gives 6,,, and ri 1 is found by

componentwise mi-complementing if necessary.

Example 8. Estimate aib = 1000000/3456 using the moduli set (23,25,27,29,31), core weights .
(-3,-2,4,-1,3}, and redundant modulus m6= 256. System constants are Pmin -6.76, Pmax 5.76,

dP= 12.51, L = 50,722,113. For clarity, the solution is given in decimal form.

. 53 -



7:17 -v

Iteration 1. ro 1,000,000 (> b).

SL(ro) = 38

SL(ro)-ro = 38,000,000 with core 183

SL(ro)b = 131,328

P SL,(SL(ro)b) = 168

SL,,(Sro)b)'SL(ro)-b =22,063,104 with core 108

quotient of cores =2

Si ql =336

r, 161, 216 (>b)

LIteration 2. SL(rI) 204

SL (r1)-rl 32, 888, 064 with core 159

SL(rl)-b =705024

SL,(SL(r)b) =22

SL,(SL(rl)b)SL(ri)-b =15,510,528 with core 76

quotient of cores =2

U~ S= =44

=2 292

82 -1

Lr 2 =9512 (> b)

Iteration 3. SL(r2) =3906

SLr)r 35,747,712 with core 173

SL(r2)b =13,499,136

SL2,(SL(r2)-b)=1

SL,(SL(r2)b)'SL(r2)-b =13,499,136 with core 69

L quotient of cores =3

54L
pJ- L



K K- ". --.

.353 = 3... .-. .

q3 = 289

83 = 1

r3 = 1216

Since r3 < b, a/b 2 q3 = 289. To 4 decimal digits, alb = 289.3519.

Statistics

Three simulation runs of 200 trials each were done to test the division algorithm in the RNS with

moduli set (23, 25, 27, 29, 31}. In each trial two numbers, a and b, were generated. The first one

was generated at random from the complete range of the RNS. The second number was generated

at random from the range [O,a) for RUN, the range [0,o11000) for RUN2, and the range

[O,c/1000000) for RUN3. In each trial two sets of data were recorded, the absolute error between the

true quotient a/b and the quotient evaluated by the algorithm, and the number of iterations

required by the algorithm. The two tables below give some summary statistics obtained from the

simulations.

I STATISTICS FOR

ABSOLUTE ERROR RUN RUN2 RUN3

minimum 3.7E-4 3.1E-3 0
, 25 percentile .123 .176 0

50 percentile .253 .301 0

75 percentile .395 .534 .333

maximum .901 .995 .889

6'-i "55_

- 55 -



STATISTICS FOR

S NUMBER OF

ITERATIONS RUN1 RUN2 RUN3

minimum 1 2 3

25 percentile 1 3 6

50 percentile 1 4 6

75 percentile 1 4 7

maximum 4 6 9

A similar set of simulations was performed using the first division algorithm. As with the present

algorithm, the absolute errors never exceeded one, but had a higher incidence of errors above one

half. The statistics on the number of iterations show that the first algorithm has very slow rate of ,

convergence, viz., 30% of the trials required over 20 iterations.

..7

-- 56 -

. . . . . . . . - .- p **

.. .. .. .. .. . .. .. .. .. . .. .. .. .. .

--''-.''.-.'i-.-'-''J '.--.'.-. ," -,",'.-... . .. -- --.-.-.-.- . .. ..- . ... *..* ..-...-... ...... .



Vill. CODING METHODS

The purpose of this hardware study was to investigate the feasibility of producing a collection of

VLSI chips which might be used to implement various digital signal processing algorithms. A chip set --

would be made up of the basic arithmetic functions, as well as some special functions. An important

special function is the operation of calculating the core. The design and fabrication of a core

calculator chip was the only way that true feasibility could be demonstrated. This effort was made

possible by the advent of new VLSI computer aided design technology. With the aid of an advanced

silicon compiler, it was possible to exercise several design options in a relatively short period of time

and to implement the final design, all with relatively low cost. The major design considerations

were: multiple operations per chip, arithmetic speed, the ability to use relatively large moduli, silicon

area, and chip delay.

In the past, nearly all RNS implmentations have used read only memories (ROM's) for the basic

arithmetic in a binary coded lookup table format (Huang, 1981; Jenkins, 1977; Jullien, 1980; Polky,

1982; Sodlerstrand, 1981]. The hardware elements have also been commercially available

components of either TTL, ECL, or NMOS technology. A typical TTL ROM would be organized as a 1 K-

4K by 8 bit memory, where a single chip package would perform each arithmetic operation. These

devices typically execute their operations on the order of 20-40 nsec (TIL). The propagation delay

can be further reduced by using ECL RAM's (7nsec), however the package count increases by eight

times since these devices are only organized as I1K by 1-bits [Huang, 1980].

VLSI devices fall into two typical categories, single operations with special feature or more complex .%%%

devices to be used as building blocks in digitial signal processing algorithms. For example, Taylor

[19821 conceptually designed a multiplier device for large (48-72 bits) dynamic range operations,

which was composed of a modulo 2n + 1 adder and a PLA. Other conceptual designs have taken a

similar approach [Jenkins, 19821 for general purpose adders, subtractors, and multipliers, all using a

binary adder and a ROM. Jenkins suggests that in addition to the basic operations, a standard device

could be implemented to perform a mixed radix conversion kernel, a nested polynomial kernel, and

complex arithmetic. More recently, Jullien [19831 has proposed an all memory structure using multi- C.- 1

look-up table modules for digital filter applications. He discusses the chip area and delay time for ~

various layouts.

- . - . - .. ... C.



S -'4

An example of a single function 8-bit RNS multiplier has been presented by Ching and Johnsson

[19831 which was submitted for fabrication by the DARPA MOSIS foundry service. They concluded

that a lookup table format is preferable for moduli coded with less than 4-bits, while an array

multiplier architecture would be better for moduli greater than 5-bits. Their analysis considered

both 41pm and O.5ptm feature sizes, with the final design implemented in 4iim NMOS. Another

more complex chip design was realized by Yeh et.al [19831, where they implemented a 32-point

Fermat number transform for FIR filters.

In all current cases of VLSI implemented RNS devices, the designs have dealt with either creating a

real-time alternate for a time consuming single functions, such as large dynamic range

multiplication; or with some special purpose function such as the number theoretic transform. Our

work has attempted to understand better the potential for VLSI implementation of more general

purpose operation which would be applied specifically to digital signal processing problems. The

core calculator chip would be the foundation of a building block collection of RNS devices. These

components could then be used with the aid of a computer aided design software package to

develop system level modules.

Several coding methods were evaluated with regard to VLSI implementation and their effects on

silicon area and propagation delay through RNS computational devices. Two general classes of ,.

codes for residue representation are redundant and nonredundant codes [Szabo, 19671. It is

assumed that residue codes for any integrated circuit devices will be of binary nature however with

relationships between bits depending on the specific type of code. For this investigation the

nonredundant code was selected to be simply as fixed weight binary code commonly used in all

computer systems. The redundant codes were of two types: 1-of-m position code, and 2-of-m -. -.

position code for a modulus of m.

The 1-of-m code is made up of m binary bits with m-1 zeroes and only a single 1 in the kth position

of the word. Residue operation with this kind of code occurs simply as a permutation of the position

of the nonzero bit in the output codes based on the respective input code positions. In terms of

memory usage, this type of code is inefficient because only m of the 2m binary states are used.

However, it was thought to have the potential for requiring less control logic than other, more

compact codes.

-58- 5



The 2-of-rn code differs in that two bits are non-zero rather than one. The primary advantage of this

code is that it requires fewer bits to represent the set of integers in any residue base. The 2-of-rn

position code is constructed by using the rn-1 left-most bits to represent half the number range, with

the right-most bit indicating which half. Consider the following example, for modulo 7 arithmetic:

digit code

0

0 0000

1 0010

2 0 10

3 1000

4 1001

5 0101

6 001 1

The sets [1,2,3] and [4,5,6] are similar in that their three left-most coded bits have only one non-zero -*

element, whose position determines the difference between individual numbers. Another

advantage of this code is simple determination of the additive inverse. in each case the additive

inverse corresponds to the number which has the same most left-most bit positions (e.g. 1 -+ (0011

and 6 -* (0011). The 2-of-rn code has properties similar to a conventional 2's complement code,

where the most significant bit is use to determine whether a number is positive or negative. An

example would be + 3 -* (00 111 and -3 -(110 11. A disadvantage of the 2-of-rn code is that its

representation for different moduli is not the same. For example, the integers 4 mod 5 and 4 mod 7

are represented by 0 10 1 and 1100 respectively.

A modulo 7 adder was selected as a model device for comparing these three codes and each

prograrnable logic array (PLA). A PLA represents a compact arrangement of primitive gates which

can accornodate a variety of complex logical operations with efficient use of silicon area. Figure 4

illustrates the geometric layout of a typical PLA. The cell is composed of rows and intersecting

columns for both the AND array and the OR array, where the rows also connect the two arrays

together. The number of columns is related to the number of input/output terms in the logic

function. A standard PLA cell is composed of an AND matrix and an OR matrix, which are linked side
by side, with the inputs going to the AND array and output leaving the OR array. A PLA implements

a canonical set of sum of products combinatorial logic functions of n-inputs and rn-outputs. The

logical structute is similar to that of a read only memory (ROM), except that it does not cause as many

459~ -..

C . . C - '.. . . . . . . .. . . . .

4. . . .~ ~ )C..~ b ~ ' " ' . , -



W0

Oil-4

I IMH lj_- 117

11 11-1 IM I .

~If

1-FUT 11UFFERS
AND PLANE O PLANEI

Fig. 4. Layout dan or proramabl logic arry(LA)

-60C0



O

unused states as a standard read only memory ROM lookup table might. This occurs because a ROM

usually has a preprogrammed AND array which allow address inputs to logically select a single m-bit ....-.

data value.

The Seattle Silicon Concordetm silicon compiler was used to generate the PLA structures for the

three coding techniques. High level logic equations were created for each type of addition

operation and were then optimized by a software logic reduction routine to produce the canonical , -

sum of products equations. Figure 5 illustrates the logic reduction and optimization for a mod 7

adder, where the original statement of the adder function is based on a truth table. The truth table

entries are in radix 10, while the final logic equations are for a binary coded residue system. In the

figure, the operands are A and B with C being the result. Logical operations of AND and OR are

symbolically represented by & and # respectively. The logical complement is indicated by the -

symbol. This sum of products form of logic equations is easily mapped into the AND/OR physical

structure a PLA module. The reduced logic equations were entered into the compiler's input stream

for further processing. Based on the corresponding minterms for each equation set, the compiler

generated the PLA cells. A graphical display monitor was used to investigate the geometric nature

of each PLA and to determine the amount of silicon area which would be occupied by each cell. The

compiler also generated additional information needed for gate level simulations and timing.

The resulting silicon areas for the three PLA structures is summarized in Table I. These results

indicate that a binary coded device would use the least number of inputs, outputs and columns. The

significance of the number of columns is that it will influence the propagation delay between the

two arrays. The small number of input/output terms is due to the compact nature of conventional

binary coding. However, it was unexpected that the silicon area and the number of PLA columns are

also less than other code implementations.
0

The propagation delay was determined by evaluating the addition of 10 random numbers in each

PLA. The average delays are given in Table II. Again, the binary code exhibited the best

performance, which is consistent with the general rule that cells with the smallest area have the

smallest delays. It is estimated from this analysis that for moduli larger that 7, the binary code will

continue to be the most efficient implementation method for VLSI RNS components.

-61-



Table I

Sizing of PLA structures for three coding methods

1 of m 2 of m binary

number of input/output 21 12 9

number of columns 49 51 36

area (sq. mil) 943 630 384

Table II

Average propagation delay for the addition of ten numbers.

I of m 2 of m binary

propagation time 21.8 15.4 13.5
(nanoseconds)

--62 -

.. °



[a) truth_table([a,b]->c)
[0,01->O; [1,0I->i; [2,01->2;

(0,21->2; [1,21->3; [2,2]->4;
(0 3 ]->3; [I 31->4; [2,3]->5;
[0,4]->4; [1 4J-> 5 [2 ,4]->6 ;
[0,51->5; [1,51->6; [2, 5]1->O ;

DO,0]->3; [4,01->4; [5,01->5;

[3:1]->4; [4,11->5; [5,11->6;

[3,21->5; (4,21->6; [5,21->O;
[3,31->6; 14,3 1->O; [5 .3]->I;
(3,41->O; ( 4, 41- >i I 5,41->2;
[3,5]->1; [ 4,5 1- > 2 [5,5]->3;
13,61->2; 14,61->3;

16 01 ->6;
(6,11->O;
16,2] ->l;
(6,31 ->2;
16 4] ->3;
16,51->4;
[6,61 ->5;

Fig. 5. Logic reduction for a mod 7 adder showing (a) the truth-
table source and (b) the reduced logic equations for a
PLA device.

-63 -



(b) Reduced Equations:

c2- (1b2 &bO & Ia2 &al &aO
# (b2 & i IbO &a2 & al &aO
# ( 1b2 & hi & hO & Ia2 & aO
# (b2 & fbi & hO & a2 & al & IaO
#' (b2 & hi & IbO & a2 & al & laO
# ( 1b2 & fbi & IbO & a2 & IaO
#' ( fb2 & bi & 1a2 & al
# (b2 & fbi & IbO & fa2 & aO
#' (b2 & IbO 6 a2 & lal & laO
#' (b2 & fbi & a2 & fal
#' (b2 & IbO & a2 & fal & laO
# b2 & fbi & 1a2 & fai)))))))))));

ci (b2 & i IbO & 1 a2 &al & *
4' (b2 & bi & a2 & 1* & aO
#' (fbi &O & lai aO
# (!b2 & hi & hO & a2 & al & laO
' (fbi & IbO & al 6 aO
#' (b2 & fbi & !a2 & al & IaO
#' (b2 & IbI & IbO & Ia2 & ai
# (b2 & fbi & hO & a2 & lai
#' (bi & IbO & tai 6 aG
#' (b2 & hi S 1*2 & ai & laO
#' (fb2 &bi IbO & a2 & 1*1
# lb2 &l hi&O & IaZ ail aO)))))))))));

cO -(b2 & bi & O & a2 & ai & a0
#' (fb2 & hi & hO & a2 & ai & a0
#' (Wb & IbO 6 12 & a0
# (hi & IbO &a 2 & al & laO
# (b2 & hi & IhO & ai & !aO
# (b2 & IbO & a2 & 1*0
# (fb2 & hO & 1a2 & aO
# (b2 & bi & hO &a2 & 1*1 & *0
# (!b2 & bi & IbO & fai & *0
# (fbi IbO & fa2 & lai & aO
#' (b2 & fbi & bO &a !* aO .

# fbi & O & fa2 & ai & aO)))))))))));

Fig. 5 (cant.)

- 64 -



an of VLSI Chip

angement of cells in the core chip corresponds closely with the arithmetic elements of the

nction, fundamentally an inner product. PLA cells were used to affect the multiplication

on, while S-bit binary adders were used for a chain summation. In RNS terms the chip

s a residue representation a = (a?,a2,a3,a4,a 5,a6), where the moduli set is

1,25,27,29,31,32}. The chip will execute the function,

C(a) s ai

the terms s, are the fixed coefficients (7,24,6,20,30,91.

determined that a modulus of 32 would be an acceptable choice not only for response related

core function, but by selecting a power of two, the basic arithmetic elements on the chip could

It from conventional 5-bit binary adders and PLA's. . Five bit binary adders were selected for

)d 32 operations, while PLA's were selected to perform the fixed coefficient multiplies. Figure .

trates the core chip floor plan. Six residue values enter the chip through PLA's wired to

m the set of fixed multiplications, followed by binary adders which accumulate the totals by --.

;ummation (mod 32), with the resulting core value produced at the chip outputs.

Design

.core calculator chip design two standard compiler components were used: the PLA and the

inary adder. The PLA's are programmed by their geometric interconnections to act essentially

,ders. In more conventional terms, the residue values represent a code which is used to select

M possible output states. For example, the mod 23 PLA would produce the following results:

input = 5 output = 3 mod 32

input = 9 output = 31 mod 32.

65 -



'be, I M

I if 2.bi-1 >M,( 0 otherwise,

I + etai.

multiplication. Delta multiplication assumes that the RNS can be subdivided into two

tems with ranges My and M2, where M =MY.M2, and My M2  VMi The value of c is

ted by the product of the integer parts of alM1 and b/tv 2, and adjusted by the residues of a

modulo My and M2, respectively.

= a/MIL, b* b/M2J, r(a) = kIl r r(b) IM2. Then a= a*.M7 + r(a), b b*.M2 + r (b)

I '= (a.b/M) = a.b* + (b*.r(a)/M,) +. (a*.r(b)/M 21 +* if(a).r(b)/MJ. In the last expression

oduct a*.b* is directly computable in the RNS since a* < Mz and b* < MI. The next two terms

e divisions by My and M2 respectively. Defining 4(a) = fr(a).b* / My L 4(b) = (r(b).a* /M 2 L.

I r(a).b' Im,, s(b) = r(b).a* 1m2. it follows that c'= a*.b* +,4 (a) +,d (b) + di, where

_r(a).&ib) s(a) s(b)
M M1  M2

lue of c = c' is evaluated as a*.b* + A1 (a) + A (b) with an error which does not exceed 3.

!sidue representations of rfa) and a* are obtained in two steps. First the representations

the subsystem of range My are evaluated. The complete residue representations are then

ed by using the extension of base theorem. The subsystem representation of r(a) follows

liately since it is identical to that of a. That of a* is obtained by dividing a-r(a) by MI in the

-79 -



.notes the product a.b (mod M), then a.b = c.M + e, and C(a.b) = c.C(M) + C(e). If C(M) * 0,

ising (A. 1), it follows that

c ={b.C(a} + E, w a (b - 0,/md) + E w, Ca, 0,lr, I - Qel + C(M . .

alue of c can then be evaluated exactly in the RNS if M and C(M) are relatively prime. This

ithm is exact, nevertheless for a system with n moduli it requires several core evaluations, n

gs (Theorem 9), and n table look-up operations.

y Multiplication. The binary algorithm uses the binary expansion of the quotient bM, and

ates c as

k a(A.2)
C c.a/2~

i=1 :

e k =[log2 (M-1)], and the bits ei are the coefficients in the binary expansion of blM. The error

ng(1) to evaluate c is

i= 2'

i is bounded above by k - I + (MI2k). The implementation of this algorithm consists of the

iation of [a/2iJ; the evaluation of the bits ei, and the sum in the right hand side of (A.2). The first

,equires at most k parity checks and scalings by 2. The binary expansion of blM is attained by

iarisons of M with the product of b with successive powers of 2. The algorithm starts with

I values ao =a, bo =b,eo =co =0, and then uses the recursive formulas given below. The process

,nates when ai =0. which will occur for some is k.

parity of a,..-

rai~i2)= (ai.i-dJ-2

-78-

.............................. %



-.- T -17 -

6~,.. -.

PENDIX. FLOATING POINT ARITHMETIC

s section presents the application of the notion of core function to mantissa operations in floating

nt arithmetic. Akushskii et al [11, [2] discuss three multiplication algorithms and one division .--. ,

iorithm: core, binary, and delta multiplication, and binary division. All four algorithms use the

-e function, but whereas core multiplication is based on a formula for the core of a product of two

egers, the other algorithms use the core indirectly to perform comparisons, extensions of base,

d scalings.

S

floating point arithmetic, each number is represented by an exponent and a mantissa. The

ponent, an integer, can be represented in the usual way as a power of 2. The mantissa, a number

tween 0 and I, is represented by the element of the RNS whose quotient to the range of the

,tem is equal to the mantissa. More precisely, a number x.2k , 0 :- x < 1, is represented by the pair

k)where0_< a < M, and[x.M) = a.

t us consider two integers a and b in [O,M), which represent the mantissas aIM and b/M

spectively. The product mantissa (c'/M) = (aIM).(bIM) is represented by the integer part c=(c' =

blMl. A general description of each of the algorithms used for evaluating the product c are given

!low. All three approaches are then applied to an example, which show in detail how each

;orithm is implemented in residue arithmetic with core functions. Since the same example is used,

is permits us to compare the algorithms in terms of complexity and speed.

ore Multiplication. The core multiplication algorithm is based on a formula for the core of a

oduct of two integers:

C(a.b) b.C(a) + Ew. b.a/ m I

= b.C(a) + E w a (b-Pimr) (A.1)

+ £ w[ a A./M -1.

-77-
... ,.. ,,. - ,-~~~~~~~~~~~..., ......-.-.-.- ,..-..,--.-...----...........:,.......--.,........-.........-.,...-................-. ...-



e made available for laboratory evaluation. After the performance limitation of these devices is

etermined, the resulting insights will be applied for further evaluation of speed enhancements,

nailer line widths (e.g., 1pm), and more input/output pins.

addition to the specific research discussed above, a more general effort will be pursued to

westigate similar design techniques applied to devices for division and other floating point

perations. A computer-aided engineering system will be used to simulate the performance of

arious RNS devices. Software simulation tools will allow a hierarchical approach to the overall p

esearch effort and thereby provide greater insight into the high level functional behavior of X

iotential subsystems for a real-time signal processing system.

,peed and hardware requirements should be evaluated for specific architectures using cores and/or

he fractional RNS for realistic problems. Simulations of critical subprocesses using a computer aided

lesign engineering workstation should be performed. Specific algorithms of interest to the Ocean

;urveillance Signal Processing program should be determined as benchmark algorithms for the

-valuation process. Given an algorithm, an RNS computational architecture could then be

letermined and the functional layout of the integrated circuits and the data flow paths would be

pecified. Execution times and hardware requirements could then be evaluated and compared with

hose predicted using a more conventional architecture.

"-76 -

* * .... * . . . . . . . . . . . - -. . ..



* -' -. .3.-..,-, A ,..'_ ._.. . .

The current algorithms of Gregory and Matula are computationally complex and require high-

precision calculations in a weighted number system, in part defeating the primary benefit of using

an RNS. Decoding procedures performed within a usual (not fractional) RNS itself will be

investigated. One approach would be to recast Gregory and Matula's algorithm into the RNS;

however, the difficulty here is requirement for integer division in repeated applications of the

Euclidian algorithm. If a core could be derived which is 'nearly linear", then the integer divide

might be efficiently performed using the core to make successively more accurate estimates of the

quotient.

Gregory and Matula have also developed a yet unpublished alternate fractional RNS. Instead of

using n-tuples of ordered pairs to represent a fraction in an n-modulus RNS, n-tuples of integers are

used together with a formal symbol. The formal symbol will appear in the kth position of the

representation of a fraction if the denominator is divisible by the kth modulus. Arithmetic

operations are then defined on the residues together with this formal symbol. This system will be

examined in detail for application to signal processing problems, and new algorithms to alleviate the

decoding bottleneck will also be investigated.

Having developed more efficient approaches for the operations of decoding and magnitude .W b

comparison, the computational complexity of the fractional RNS on realistic problems will be

evaluated. Comparisons with other RNS and more conventional architectures will be performed.

Research should continue toward investigation of VLSI techniques applied to special purpose RNS

devices. Further analysis for functional performance and execution speed of a core calculation chip is

required. These efforts could be performed with the aid of a silicon compiler CAD system. By using

such a method, considerable insight can be gained regarding the detailed physical layout and logical

performance of a conceptual RNS processor chip. By taking advantage of a low cost shared-chip

fabrication process, a small number of devices can be produced for further research of real chip

performance. It is expected that both a core calculation chip and a multi-modulus adder chip would

- 75 -



Many other applications of the core function may exist, and new and even simpler algorithms for the

difficult residue operations may be possible. First, analysis of convergence properties of the new

division algorithms should be performed. It is expected that further refinements of the algorithms

will yield better convergence properties. Second, new overflow detection methods for both

addition and multiplication are probably possible for suitably linear core functions. Next, analysis of

appropriate integer programming techniques for computation of optimal core functions is required.

Improvement of the floating point division and multiplication algorithms of Akushskii et al. should

be investigated. Possibly, core functions could be utilized to attain a unique representation of a

floating point number. Next, the analysis of the Soviet RNS literature for this project has been so '%%

fruitful that further efforts in this direction are required. Finally, a variety of other uses for the core

will undoubtably arise; for example core functions may be applied to fault tolerant systems.

In the course of the current project, the fractional RNS concepts of Gregory et al. [111 were surveyed

for their application to real time signal processing. In a fractional RNS a mapping is defined from a

subset of the rationals to a residue system which permits divisions as fast as multiplications and

additions. The work was developed for exact arithmetic in poorly conditioned linear algebra

computations. Consequently, it was implemented on a general purpose computer using extremely

large moduli and an extremely large dynamic range (on the order of hundreds of bits). This work is

not only mathematically elegant, but it may have great potential for the smaller dynamic range

problems found in signal processing. In this setting, encoding into the system and all the elementary

arithmetic operations (including division) are efficient and can be implemented in a single clock cycle

using custom or semi-custom hardware. The operations of magnitude comparison and decoding

back to the fractional representation are currently quite difficult, and the development of new

algorithms for these operations is expected to permit the application of the fractional RNS to

complex signal processing problems.

- 74 -
"; :"/ 171:''"1"-"."-" " - - '1 .'. ., -.. 1..'' . .'a*. .' ',' :". '- ., '....'. a . '. . '..'aa a . . . . . .. '' "- -. .. , .. - .- - .,



S1- -"

IX. CONCLUSION AND FUTURE WORK

This paper has presented the core function of Akushskii, Burcev, and Pak and has extended their

theoretical results to render the core function a practical solution to the difficulties of residue

arithmetic. Specifically, this paper has introduced the use of a redundant modulus for efficient core

calculation and has presented algorithms for all of the traditionally difficult residue operations

including comparison and general division. In addition, new results were presented which

reformulate the problem of selecting the core coefficients wi as an integer programming problem,

so that optimal cores may be obtained. High speed VLSI circuits for implementing the core function

and other multi-stage RNS computations have been judged feasible.

In the past, the residue number system has been well matched to the performance of linear signal

processing algorithms for which very-high speed execution was critical. With the results presented in

this work, it now appears that the RNS may be suited for high speed performance of nonlinear

arithmetic and complex logical operations. These efforts have been very positive, both in the

solutions of some theoretical problems and in leading to physically realizable RNS core calculation

integrated circuits. By coupling the parallelism of the RNS with the positional capabilities of the core

function, RNS computational architectures offer high potential for next generation processors for

both linear and non-linear real time processing.

° -- =

Further research is required before this potential can be realized for practical data processing

systems. Four areas have been identified for continued investigation. These include (i) further

analysis of the applications of the core function; (ii) investigation of fractional RNS systems; (iii)

conceptual design and analysis of RNS VLSI devices; and (iv) development to facilitate applications of

this technology to signal processing.

- 73 -



* . ~1- -.-. o-.-- ----

moduli a, si product (mod 32)

23 10 7 6

25 20 24 0

27 5 6 30 .-

29 25 20 20

31 19 30 26

32 30 9 14

core (mod 32) = 0

Based on the simulation with the above stated test numbers, the propogation delay for the entire

chip was found to be 60 nsec. This is a respectable performance for a multiple operation RNS

calculation. As a comparison, if single commercially available chips were used, then the delay might

be 6X35nsec = 210 nsec (assuming one multiply and 5 adds). Also it is possible that further

optimization could be achieved for the VLSI layout, so that a delay shorter than 60 nsec might be

attained.

- 72 -

. . -- - -. -. - - - -



,-7

04 -2

1.4 o.

Lq 42

.04

.T-



4JJ

- - - - - - - - - - - - -

r-

-700



I n n nIn n N

IMI U I I I I I-t I IN r Iw 1 1 1 1 -L I Ju l Mi 31.

Fig 7Lyot rawing fora btadetel

- 69 -

....... 

-- TF.

- -- .* " .* .* *... . ..- .* *. .*.

.. . . . . . . . . . . . . . . . . .. . . . . . .



The PLA outputs feed five 5-bit binary adders, whose outputs are then connected to the inputs of the

next stage. Since the addition of all arithmetic is done mod 32, this chained arrangement facilitates

data flow. Figure 7 represents the silicon design for the adders, where the nature of the geometric

patterns is similar to the previously described PLA cell.

Figure 8 illustrates the working area of the core calculator, whose dimension is 70 x 100 mils. (This is

smaller than a single cell for a 1-of-rn or 2-of-m position code). Figure 9 shows the complete chip,

including an input/output pad ring, 30 inputs, 5 outputs and one power/ground pair, with a total
area of 155 x 200 mils.

9-

Simulation

The core calculator design was tested using RNL, a timing logic simulator for digital circuits, which

* uses a resistive model of transistors to implement a logic level simulations. This simulation

completely checks the functionality of the circuitry, and has been determined accurate from previous

research to be within 20 percent of the performance measured for devices in actual fabrication.

The entire core chip was evaluated by processing a set of test vectors which were selected as the

numbers:

4%

1835870 10545965 6401369 7435820 3056008 9474898

13045486 5352529 11597763. -

This set was encoded by each modulus to produce the input residues for the chip input pins, and the

resulting core values from the chip simulation were compared with the analytical values. A

successful match between these results was used as a strong indication that the chip would function .

properly after fabrication. A sample calculation would be similar to the following: -

L 'O
-68-

J. .....



-7~~ ~ ~ V.- -7 -- C-r-W

The silicon representation of the standard PLA cell is shown in Fig. 4. The design shows the various

,. layers (metal, poly silicon, diffusion, etc.) of the CMOS p-well fabrication process. As shown in the

Figure, the PLA is surrounded by Vdd and GND metal traces. The inputs to the PLA occur at the five

contacts located in the lower left hand corner. The input signals proceed north through buffers
where the drive capacity and propagation delays of the signal can be controlled.

SThe signals exit the buffers and enter the plane of the PLAs , which consists of minterm rows

representing the binary form of the input vector. A modulo 31 PtA has 31 rows of minterms,

" representing inputs of 0-30. Physically these minterms are a series of transistors that form logic gates

corresponding to the PLA code file. For example, the code file for row 2 of this PLA is

00010

which is the binary representation of the number 2. Silicon transistors are formed in row 2 such that

if the PLA input is equal to 2, then the output will correspond to the value stored on the right hand

side of row 2, which forms the OR plane of the PLA.

The PLA in Figure 4 multiplies the input signal by 30 and then outputs the product modulo 32. For

the above example, an input of 2 will yield an output of: 2 x 30 a 28 (mod 32).

Thus the right hand side of row 2 has transistors which represent the binary code for 28, or

11100. .

" The result of an input signal equal to 2 produces an output signal equal to 28, which is the correct

response for this PLA. The electronic iiput signals pass from the input contacts through the proper

*~ minterm and finally through the output buffers to the output contacts for wiring connections to

other parts of the core calculator.

-6 - '



C r-

'-1

(41

41

00

AC $., 0

%00

- 66-



subsystem of range M2 and then applying extension of base to the subsystem MI. Similar steps are

used to evaluate the rest of the terms.

Example 9. Consider an RNS with moduli (3,5,7,1 1). The core function has weights (-,,11,and

hence C(M) = CO1 155) = 17. The orthogonal basis elements are By = 385, B2 = 231, B3 =330 and

B4 = 210, with cores C(B) = 6, C(8 2 ) = 3, C(8 3) = 5, and C(B 4) 3. The core has a minimum of -2

and a maximum of 18, and so 0,1,15, and 16 are critical cores.

In the present example the multiplicands are a (0, 1,5,8) with cor' C(a)= 1, and b (2,4,6,9) with

core C(b) = 13. The value of c =fa.b/MJ is evaluated using the three algorithms described above. The

decoded values of the operands and quotients as well as the errors are discussed following the

example.

*(i) Core Multiplication.

When formula ()is applied several of the terms are easily computed. First b.C~'a) =(2,4,6,9) x I

* (2,4,6,9). The third term may be computed using a table look-up to evaluate each of the summands

wi (a, fl,/ mil, and then adding to obtain (2,2,2,2). The remainder e =Ia.b /M = (0,4,2,6) has core C(e)

=6, and so -C(e) = (0,4I,5. The division by C(M) = 17 is implemented by multiP!'V4ng by its

reciprocal (1/17) = (2,3,5,2), which is a system constant. The first sum is the only remaining term and a,,.
is the most demanding. it requires one scaling of b per modulus, e.g., for the first modulus

b-by = (0,2.4,7) with core C(b-b) a13. The residue representation of (b-bb)s m in the subsystem of %

moduli (5,7,111 is

-r 1-(2,4,7)

- = (2,4,7) x(2,5,4) =(4,6,6).
m~ (3,3,3)

Using Theorem 9 to scale b by my it follows that the remainder of (b-b) /my with respect torm is

2. Repeating this process for each of the rest of the moduli one obtains (b-b2)wi 2 (2,3,6,1),

(b-b3 1m3  o (2,4,1,2), (b-b4 M4  (1,0, 1,S), and soZwi a (b-fiomr ) (2, 1,1, 1).

- 80 -



- - - .. "..

7--

Formula (A.1) is now applied to calculate c = (2,4,6,9) + (2,1,1,1) + (2,2,2,2) + (0,4,1,5)) x (2,3,5,2)

(0,1,3,6) x (2,3,5,2) (0,3,1.1).

(ii) Binary Multiplication

"" In this example k log2 (M-1)] = 10, so the algorithm will take at most 10 steps. The results of •

applying the iterative steps of the algorithm are shown in Table 1. The parity di of a..j is

determined using Theorem 4 which requires the evaluation of the core of ai and the parity of its

residue components. The bit ri is determined by means of Theorem 7 which requires two core ,,".-

calculations and a comparison. In Table 1 six iterations are shown since a7 = 0. The last entry for.the

ci col umn gives c= (0,3,1,1).

TABLE I

di_ ji b, C

0 (0,1,S,8) (2.4.6.9) 0 (0.0.0.0)

1 0 (0.3.6.4) (1.3.S.7) 1 (0.3.6.4)

2 0 (0.4.3,2) (2.1.3,3) 1 (0,2,2.6)

3 0 (0.2.5.1) (1.2.6,6) 0 (0.2,2.6)

4 0 (0,1.6,6) (2,4,5,1) 1 (0.3.1.1)
IX

S 0 (0.3,3.3) (1.3.3,2) 0 (0.3,1,1)

6 I (1,1,1.1) (2.1,6,4) 0 (0.3.1.1)

7 0 - -

. (iii) Delta Multiplication

Since M= 1155, the subsystems the complete system is subdivided into are (3,11) with range

Mr = 33, and (5,7} with range M 2 = 35. For extension of base calculations core functions are defined,..,

on each of the two subsystems: C,(a) = [a/3] - fa/1 11, and C2(a) = "[/5] + 3[a/ 7].

°-

::r..::.
-81.- .-

",V.. .___ .,._.-_, _, ._.-,,',,-.-.''''''.-.- " " .: :.:. ':.:.'. ' " .:-'-:.;"' ,.;" " -' -" "',"......".: ,_ ..":".. .,_-" " -., _ ","..". "" ". " . . ..._,,.., .-:" ".-,



Since a=(0,1,5,8) it follows that r(a)=(0,8) in the first subsystem. Using the extension of base

theorem and CY(r(a)) = 8, one obtains that r(a) = (0,0,2,8) in the complete system. The value of a* is

first evaluated modulo M2 in the second subsystem, ...

I a- r~a)" (1.5) - (0,2)

a*j = = (1,3)x (2,3) (2,2),
M 2 (3.5)

and then since C2 (a*) 0, by extension of base, obtain a* = (2,2,2,2).

Similar calculations lead to r(b) = (1,4,6,1), b* = (2,1,5,4), A (a) = (2,3,2,1) and A (b) = (1,1,1,1).

Fromthese c is evaluated as c = (2,2,2,2)x(2,1,5,4) + (2,3,2,1) + (1,1,1,1) = (1,1,6,10).

The first two algorithms evaluate c= (0,3,1,1), which corresponds to the integer 78. in fact since

a = 96 and b = 944, the exact value of [c] is 78. Delta multiplication evaluates c = (1,1,6,10) which

corresponds to 76, i.e., an error of 2 units.

The core algorithm is exact but it is the most intensive in computations. The delta algorithm requires

eight extensions of base, independently of the size of the moduli set, and assures a maximum error

of less than 3. The binary algorithm is in general the simplest and of faster convergence, but allows

the largest error, e.g., if in the same RNS one considers the case where a = 1023 and b = 1154,

then c = [a.b/Ml = 1022, but the bi nary algorithm calcualtes c = 1013, i.e., an error of 9.

Division Algorithm. The binary division algorithm for floating point arithmetic is similar to that for

binary multiplication. It combines a binary expansion of a number in [0,1) with the quotients and

remainders obtained in dividing the range of the RNS by successive powers of two.

Let a and b be two integers in [O,M], a < b, which represent the mantissas aIM and blM ,. -.

respectively. The quotient mantissa (q' I M) = (a / M) I (b I M) is represented by q in [O,M), where "

q =[M.alb.

The value of q'can be evaluated as the sum of the terms:

-82 -

• - .7.:.



k

j=1

k 2 =

i=.
E=M. .,,I2 ,

where the Ei are the bits in the binary expansion of a/b, i.e., -

(alb) = /2

k = fIog2 M]; and Ti and Si are the quotients and remainders obtained when dividing M by

successive powers of 2, i.e., T = [M2i], Si =/M 2 i.

The bits ri, as shown below, can be evaluated within the RNS, by successive multiplications by 2 and

comparisons with b. The sum Q, only involves the bits and the system constants Ti, and so it is also

computable in residue arithmetic. Applying this direct approach to the sum 0*2 proves not useful

since Si < 2 and hence the sum would be computed as Q*2 = 0. A more accurate procedure is

obtained by first evaluating this sum with M.Si instead of Si, and then dividing the result by M, i.e., -:
Q*2 is rewritten as the sum of

1 k

E 2% M 

°i .
2

- 83 -



where Ui =[M.Si/2i], and Vi IM.Sil2i.

The value of q :/a.b / M] is evaluated as the sum Q, + [Q21, where El, E2, and E3 contribute to

define the error in the evaluation of q. This error can be shown not to exceed

I+(MI2k) + (k-I +2-k)lM <4. .."-

The algorithm presented by Akushskii et al. can be divided into three parts.

(1) Evaluation of the system constants (precomputed)

k =[og2 ML, .--

Ti =[M M2 i/, j= I_ l...k

C (Ui) : core of Ui.

(2) Evaluation of the binary expansion of alb. The following recursive scheme is used: starting

with initial values of ao a and r. = 0, the recursive step is

a9 = 2 (ai.I - b.ti. ),

I ifai >b,

O otherwise.

(3) Evaluation of the sums used to evaluate the quotient q.

T.c

- 84 -

......, . m .. . . .,- -. ... .. . .. 2 .:. ..,., ". " . . . , . .. .. , . , . .. , ' , , ., .. """



...................-.. ,

kS

Q2 = U i i / MI

q - +, Q2. ;:::

Example 10. Consider the RNS with moduli (7,9,11}, and core function with weights (-1,-1,3). Let

a (3,6,1 O)with C(a) = 0, and b = (0,2,8) with C(b) = 5, represent two mantissas.

The residue representation of T, U,, and their cores are shown in Table 2.The iterations of step (2),

are shown in Table 3. Each column corresponds to an iteration starting with the column of initial

values. The row entries are evaluated as follows

(i) 2.ai.i if i-I= 0

ai = '2"'

2.(aiq-b) ifei.= 1

(ii) C(ad) evaluated using Theorem 2 for the core of 2.ai or 2.(ai-b), depending on the value of
Li,

(iii) ai-b computed in residue arithmetic

(iv) C(ai-b) computed using Theorem 2 for the core of a difference,

(v) C(ai-b) computed using Theorem 13, the Core Chinese Remainder Theorem,

(vi) binary bit: e, = 1 or 0 depending on whether the two core values given in (iv) and (v)

coincide or not,

-85-

:.- .. .''.' ';2" .2 .': .. '.: .".. ,. .-'. " ." o:- '. ";..- -. . " . . .". -) " , ., .'2. -...: ..-.. 2. ;--: - ..- .-2 : '-*", *- * . .',. -. -.-. ..''.- . -- '.-'



(vii) Q = Q- + Tie 1

(viii) MQ2j MQ2j1 , + Uivi,(mod M),

(ix) overflow indicator: 'ii 1 or 0 depending on whether the sum in (viii) overflows the

system or not, 7

(x) accumulated overflow indicator: sumri1 sumiw, + rj,

(xi) qj Q + sum~j

- -86-



TABLE 2

1 2 3 4 5 6 7 8 9

Ti 3,4,5 5,2,8 2,5,9 1,7,10 0,3,10 3,1,10 5,5,5 2,2,2 1,1,1

U, 3,4,5 5,2,8 6,1,4 6,0,7 6,4,3 6,6,1 6,7,0 6,3,5 6,1,2

C(ui) 6 2 8 3 9 12 7 9 5

TABLE 3

0 1 2 3 4 5 6 7 8 9

ai 3,6,10 6,3,9 5,6,7 3,3,3 6,2,1 5,0,8 3,5,0 6,6,6 5,3,1 3,6,2

C(a,) 0 2 6 13 13 9 8 0 1 1

ai-b -- 6,1,1 5,4,10 3,1,6 6,0,4 5,7,0 3,3,3 6,4,9 5,1,4 3,4,5

C(ai-b) -3 -2 5 5 5 0 -8 -7 -7

C(ai-b) -- 10 11 5 5 5 0 5 6 6

zi 0 0 0 1 1 1 1 0 0 0

Qii 0 0 0 2,5,9 3,3,8 3,6,7 6,7,6 6,7,6 6,7,6 6,7,6

Q2i 0 0 0 6,1,4 5,1,0 4,5,3 3,2,4 3.2,4 3,2,4 3,2,4

--i 0 0 0 0 1 1 0 0 00

Sum q1  - 0 0 0 0 1 2 2 2 2

q - 0 0 2,5,9 3,3,8 4,7,8 1,0,8 1,,0.8 1,0,8 1,0,8

- 87 -



REFERENCES

9-

[1] 1. Ja. Akushskii, V. M. Burcev, and I. T. Pak, "A new positional characteristic of

nonpositional codes and its applications," in Coding Theory and the Optimization of

Complex Systems (Ed. by V. M. Amerbaev; 'Nauka' Kazakh. SSR, Alma-Ata; 1977)

[21 I. Ja. Akushskii, V. M Burcev, and I. T. Pak, "Computation of the positional characteristic of

a nonpositional code," in Coding Theory and the Optimization of Complex Systems (Ed. by O

V. M. Amerbaev; 'Nauka' Kazakh. SSR, Alma-Ata; 1977)

[3] D. D. Miller, J. N. Polky, and J. R. King, "A survey of recent Soviet developments in residue

number systems," Proceedings of the 26th Midwest Symposium on Circuits and Systems,

Puebla, Mexico, August 1983.

(41 N. S. Szabo', and R. I. Tanaka, Residue Arithmetic and its Applications to Computer

Technology. New York: McGraw Hill, 1967.

[51 R. S. Garfinkel, and G. L. Nemhauser, Integer Programming. New York: John Wiley & Sons,

1972.

[61 H. Greenberg, Integer Programming. New York: Academic Press, 1971.

171 I. Ja. Akushskii, V. M Burcev, and I. T. Pak, "Algorithms for division using the core

characteristic," in Coding Theory and the Optimization of Complex Systems (Ed. by V. M.

Amerbaev; 'Nauka' Kazakh. SSR,Alma-Ata; 1977).

-. 88 -



81 1. Ja. Akushskii, V. M Burcev, and 1. T. Pak, 'Algorithms for multiplication using a kernel

characteristic,* in Theory of Coding and Complexity of Calculations (Ed. by 1. Ja. Akushskii,

V. M Burcev, and 1. T. Pak; 'Navka' Kazah. SSR, Alma-Ata; 1980).

91 1. Ja. Akushskii, V. M Burcev, and 1. T. Pak, 'Principles for the construction of highly

efficient and reliable processors in non-positional number systems,' in Theory of Coding

and Complexity of Calculations (Ed. by 1. Ja. Akushskii, V. M Burcev, and 1. T. Pak; 'Navka'

Kazah. SSR, Alma-Ata; 1980).

101 1. Ja. Akushskii, and V. M Burcev, "Some properties of the core characteristic of

nonpositional systems,* Vestnik Akad Nauk Kazakh. SSR, 1983.

-ill R. T. Gregory, and E. V. Krishnamurthy, Methods and Applications of Error-Free

Computation, New York: Springer-Verlag, 1984.

121 C. Chiang and L. Johnsson, "Residue Arithmetic and VLSI", Proc. IEEE Inter. Conf. on

Computer Design: VLSI in Computers, Port Chester, N. Y., 1983.

131 C. Yeh, I Reed and J. J. Chang, "VLSI Design of Number-Theoretic Transforms for a Fast

Convolution% Proc. IEEE Inter. Conf. on Computer Design: VLSI in Computers, Port

Chester, N. Y., 1983.

141 G. A. Jullien and A. Bayoumi. 'RNS Modules for VLSI Implementation of Digital Filters:,

Proc. 26th Midwest Symp. Circuits and Systems, Puebla Mexico, August 1983.

151 W. K. Jenkins, 'Residue Number System Error Checking Using Expanded Projection",

Electronics Letters. Vol. 18, No. 2 1, pp. 927-928, Oct. 1982.

- 89 -



F. J. Taylor, 'A VLSI Residue Arithmetic Multiplier', IEEE Trans. Computers, Vol. C-31, No. 6.

pp. 540-546, June 1982.

C. H. Huang, 'High-Speed Two-Dimensional Filtering Using Residue Arithmetic" 24th SPIE

Intern. Tech. Symp., San Diego, CA. July 1980. L

C. H. Huang, D. G. Peterson, H. E. Rauch, J. W. Teague, and D. F. Fraser, "Implementation of

a Fast Digital Processor Using Residue Number Arithmetic", IEEE Trans. Circuits and

Systems, Vol. CAS-28, No. 1, pp. 32-38, Jan. 1981.

11 W. K. Jenkins and 8. J. Leon, "The Use of Residue Number Systems in the Deisgn of Finite

Impulse Response Digital Filters", IEEE Trans. Circuits and Systems, Vol. CAS-24, No. 4, pp.

191-201, April 1977.

31 G. A. Jullien and W. C. Miller, 'A Hardware Realization of an NTT Convolver Using ROM .7

Arrays', Proc. 1980 IEEE Intern. Conf. Acoustics Speech and Signal Processing, Denver, CO,

April 1980.

I J. N. Polky and D. D. Miller, "The RAAF processor: architecture of the residue arithmetic

adaptive filter processor', Conference Record. 16th Asilomar Conference on Circuits,

Systems & Computers, Pacific Grove, CA., Nov. 1982.

21 M. A. Soderstrand, 'New Hardware for High Speed Adaptive Digital Filtering', Proc. 24th

Midwest Symp. Circuits and Systems, Albuquerque, NM. pp. 63-68, June 1981.

-~~ -90- '

= °% '. o



FILMED

7-85

DTIC
----- 4-.'..~ ~ ~ ~~~~t 4- *L7 *~ . . .. . . . . . .\. 4 *4


